Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Cтатьи / Разное
Начало сайта / Cтатьи / Разное

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Безумные идеи

Законы Паркинсона

Обычное в необычном (Энциклопедия чудес. Книга первая)

Парадокс XX века

У истоков дизайна

Этюды о Вселенной

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Антинаучная статья

Валентин Яковлевич Мач

Про бессилие науки перед тайною Бермуд.

В. Высоцкий

Где-то в 50-х или 60-х годах прочёл в журнале «Техника молодёжи» статью, в которой утверждалось о необходимости развивать в себе способность к эвристическому мышлению, позволяющему находить решения задач в различных областях науки и техники как бы по наитию в виде необъяснимых эвристических догадок, обходя стороной неотразимую убедительность стройных логических рассуждений. О самом процессе эвристического мышления и способах его развития автор статьи не сказал ничего, ограничившись описанием решённой эвристическим образом задачи, стоявшей перед инженерами всех стран, участвовавших во Второй мировой войне. Заключалась эта задача в настоятельной необходимости предотвращения целенаправленных налётов вражеской авиации в ночное время на объекты промышленности, обнаруживаемых по открытому пламени труб промышленных предприятий. Долго и безуспешно бились соответствующие специалисты над решением этой задачи, придумывая всевозможные способы надёжной маскировки. Решение всё-таки было найдено, но только после переформулирования задачи. То есть, формулировку – «скрыть пламя» заменили формулировкой – «сделать пламя невидимым». Требуемым решением оказалось добавление медного купороса в топки печей промышленных предприятий.

Представляется весьма заманчивым освоить это самое эвристическое мышление для того, чтобы затем походя находить решения различных научных и технических задач. Тем более, что история развития науки и техники предоставляет огромное множество примеров эвристических решений. Наиболее известным из них является «Эврика!» Архимеда, открывшего закон (хотя, спрашивается, почему закон, а не свойство жидкости воздействовать на погружённое в неё тело), о котором (свойстве) Архимед догадался, находясь в ванне. Ещё одним примером эвристической догадки является закон всемирного тяготения Исаака Ньютона. Хотя и в этом случае позволительно спросить, почему закон, а не свойство физических объектов материального мира взаимодействовать между собой на расстоянии. Поговаривают, что озаряющая догадка об этом свойстве возникла у него тотчас же после падения на его голову яблока. Результатом эвристической догадки является открытие Евклидом свойства параллельных прямых. Та же самая периодическая таблица химических элементов Менделеева оказалась очередной эвристической догадкой, возникшей в его голове во время сна.

Не всегда, однако, известны сопутствующие обстоятельства, способствовавшие возникновению той или иной эвристической догадки. Одной из таких является, например, аксиома Евклида о свойстве параллельных прямых. Неизвестно также сопутствующее обстоятельство, способствовавшее изобретению колеса. Но и более древние наши предки внесли свой посильный анонимный вклад в копилку загадочных эвристических находок. В очередной раз такое знаменательное событие произошло тогда, когда один из них с огромным интересом посмотрел на лежащий недалеко камень, только что проводив унылым взглядом быстро убегающую несостоявшуюся добычу. Вот таким непостижимым образом человек познавал и осваивал окружающий его материальный мир до появления науки и свойственного ей строгого логического мышления.

Несмотря на многочисленность примеров эвристических решений, само по себе оно представляет собой некую, недоступную обычному пониманию, загадку. Сопутствующие обстоятельства, способствовавшие возникновению многих эвристических решений, представляют собой отдельный интерес, который, возможно, потребует когда-нибудь произвести их полную, по мере возможности, систематизацию. Пока что представляется в высшей степени целесообразным выяснить, возможно ли посредством логического мышления находить решения задач, обнаруженные с помощью эвристических догадок. Остаётся предположить, что для выяснения этого вопроса наиболее подходящей является такая точная наука как математика.

Совокупность всех этапов развития математики – от сложения натуральных чисел до дифференцирования, интегрирования и не только – представляет собой длительную последовательность соответствующих эвристических догадок. Одни из них представляют собой множество неопределённых и в то же самое время неопределяемых понятий, другие – множество бездоказательных и в то же время недоказуемых утверждений, называемых аксиомами. Если математическая логика не в состоянии доказать собственные аксиомы математики, то одновременно она не в состоянии получить новые с помощью любых логических рассуждений. В целом это означает неспособность логического мышления решать задачи, решаемые посредством эвристических догадок. Получается так, что математика есть наука о воображаемых количественных отношениях и пространственных формах, так как все они существует только в человеческом воображении и нигде более, а вся математическая логика служит только для внутреннего потребления, позволяя всего лишь правильно ориентироваться в пределах уже ранее сложившегося математического аппарата.

Если верить математикам, то можно подумать, что пространство образуется достаточным множеством точек. Однако, даже не математикам известно, что размер точки в любом измерении равен нулю, сумма любого количества которых представляет собой один-единственный ноль. Вот так и совокупность любого количества точек образует собой одну-единственную точку. Можно с достаточной для того уверенностью утверждать, что в природе не существуют человеческие представления обозначаемые такими неопределяемыми понятиями как точка, прямая, плоскость, пространство и т.д. Совершив некоторое насилие над здравым смыслом, можно допустить существование, например, такого пространства, но только в качестве воображаемого вместилища для воображаемых же представлений обозначаемых неопределяемыми понятиями, а также производных от них количественных отношений и пространственных форм. Очевидно, что существовать такое пространство может только в воображении математиков и нигде более, поэтому и назовём его пространством математическим.

Недалеко от математиков ушли и физики, рассматривающие пространство в качестве простого вместилища для перемещающихся физических объектов. Можно предположить существование более тесной связи между пространством и материей, отводя последней роль носителя пространства. Если физики всё ещё ищут мельчайший кирпичик материи, называемый кварком, то искать его следует скорее всего вместе с сопутствующим ему пространством. В целом можно выразиться в том смысле, что без материи нет пространства, а без пространства нет материи. Короче, если бы физики не знали математику, то они намного лучше знали бы физику.

Вот так и сама физика – наука, которая с целью использования математических методов для изучения окружающего нас материального мира, значительно упрощает физические свойства, явления и процессы, рассматривая их в так называемом идеальном или воображаемом виде. Одна только механика использует такие несуществующие физические свойства, явления и процессы как, например, абсолютно твёрдое тело, материальная точка, равномерное и прямолинейное движение, а также многие другие, так как не существует никакой возможности описать в точности реальную действительность с помощью идеальных математических методов.

Хранящийся в Международном бюро мер и весов эталон длины является в действительности непостоянной произвольно выбранной мерой, которую невозможно даже представить в виде какой-то части какого-то неизвестной и непостоянной длины меридиана, или в виде неизвестной и непостоянной длины волны какого-то излучения, или в виде какого-то неизвестного и непостоянного расстояния, проходимого светом за какую-то долю настолько же сомнительной секунды. Это означает, что не существует даже идеального, то есть воображаемого эталона длины. Такими же произвольными и непостоянными мерами являются эталоны остальных физических величин, так как в природе не существует ни одного физического объекта, обладающего хотя бы временно и хотя бы одним постоянным физическим параметром, и нет никакой возможности выяснить точное мгновенное значение любого из них.

Математика может считаться точной наукой только тогда, когда она рассматривает безразмерные величины. Физика, со своей стороны, не имеет ничего точного, что можно было бы подставить в математические формулы, которые дают, конечно, некоторый, приемлемый для дальнейших ограниченных теоретических рассуждений или допустимых практических действий, приближённый арифметический результат, но не более того и далеко не в каждом случае. По мере возможности наиболее важные результаты математических вычислений проверяются в процессе практических экспериментов, а затем, по мере необходимости, пересматриваются. Где сейчас была бы та же самая авиация, если бы результаты использования математического аппарата аэродинамики не подвергались проверкам в аэродинамической трубе? Что касается сущности описываемых математикой физических свойств, явлений и процессов, то математические формулы имеют к ней весьма отдалённое отношение, так как в природе не совершаются никакие математические действия. То есть, в окружающем нас материальном мире нет и быть не может в принципе никаких математических ужасов, парадоксов и противоречий, которые если и существуют где-нибудь, то только в человеческом воображении и нигде более.

Можно с достаточной уверенностью утверждать, что подобно математике совокупность всех этапов развития физики также представляет собой такую же длительную последовательность тех же самых эвристических догадок. Одни из них представляют собой такую же совокупность таких же самых неопределённых и неопределяемых понятий, другие – такую же совокупность таких же самых бездоказательных и недоказуемых утверждений. Налицо очевидное несоответствие, заключающееся в том, что недоказуемое в математике является знаниями о воображаемых количественных отношениях и пространственных формах, а недоказуемое в физике преподносится в качестве точных знаний о реальных физических свойствах, явлениях и процессах. Над этим несоответствием следует основательно призадуматься хотя бы для того, чтобы вспомнить основоположника немецкой классической философии, которым является Иммануил Кант, и его утверждение о том, что окружающий нас материальный мир совсем не такой, каким мы его себе представляем. С этим утверждением нельзя не согласиться хотя бы потому, что видим мы всегда намного больше, чем понимаем.

Так вот оно, что оказывается! Всё то, что мы самонадеянно считаем точными знаниями, является в действительности всего лишь нашими, заведомо ошибочными, представлениями о реальных физических свойствах, явлениях и процессах. Каждое новое о них представление всего лишь изменяет наше видение окружающего нас материального мира в целом, которое, надо надеяться, становится более полным, хотя и остаётся заведомо не соответствующим окружающей нас реальной действительности. То есть, недоказуемое в физике является таким же самым, как и в математике, знанием о воображаемых физических свойствах, явлениях и процессах. Это означает, что законы физики представляют собой всего лишь физические аксиомы. Спрашивается, каким таким образом можно вывести логическим путём точное знание, опираясь на заведомо ошибочное предыдущее представление, полученное в виде недоказуемой эвристической догадки? Получается, что никакого логического мышления, позволяющего получить хотя бы более полное представление о том или ином физическом свойстве, явлении и процессе, не говоря уже о точном знании, не существует вовсе. Действительно, какое такое логическое мышление совершается в процессе очередного умножения два на два, и какое новое знание мы получаем в результате? Оказывается, что математическая логика – это всего лишь точный порядок действий с абстрактными, не существующими в действительности, понятиями.

Так чем же руководствуются в своей научной деятельности те же самые физики, предлагая вниманию всех остальных своё представление о тех или иных физических свойствах, явлениях и процессах? Оказывается, что руководствуются все они ничем другим, а только лишь собственным здравым смыслом по причине недоказуемости эвристических догадок и отсутствия какого-либо другого критерия для оценки их приемлемости. Действительно! Чем ещё мог руководствоваться Архимед, предлагая своё представление о характере взаимодействия между жидкостью и погружённым в неё телом. Чем ещё мог руководствоваться Исаак Ньютон, предлагая своё представление о характере взаимодействия между удалёнными друг от друга физическими объектами. То же самое математики. Чем ещё мог руководствоваться Евклид, предлагая своё представление о свойстве параллельных прямых. То же самое химики. Чем ещё мог руководствоваться Менделеев, предлагая своё представление о строении периодической таблицы химических элементов.

Да и никто другой не потребовал от них никаких доказательств, так как у каждого из всех остальных оказалось достаточно собственного здравого смысла для того, чтобы безоговорочно согласиться с соответствующими утверждениями Архимеда, Ньютона, Евклида и Менделеева. Имеется также множество других примеров безоговорочного согласия с теми или иными эвристическими догадками. В таких случаях говорят, как правило, что истина лежала на поверхности. Если такая эвристическая догадка ставится кому-нибудь в заслугу, то нередко следуют возражения в том смысле, что уж в этом-то тривиальном случае и без того всем всё понятно. В своё время, однако, многие наблюдали свойство круглого катиться, но только один человек догадался использовать его для прямолинейного перемещения транспортных средств. И ещё неизвестно, сколь долго все остальные и дальше продолжали бы круглое таскать, а плоское катать.

Далеко не всегда, однако, наблюдается подобное единомыслие в научной среде. Многие учёные от математики, например, продолжительное время не воспринимали криволинейную геометрию Лобачевского. Хотя, казалось бы, о чём могут спорить учёные, уверенные в том, что всё или почти всё можно доказать с помощью формальной, диалектической или какой-либо другой логики? Большей частью предметом весьма ожесточённых иногда научных споров как раз и являются эти самые, неподвластные любой логике, эвристические догадки. В случае с Лобачевским – это аксиомы криволинейной геометрии, несовместимые с аксиомами геометрии прямолинейной. Именно и только по причине полного непонимания чужих эвристических догадок новое зачастую встречает значительное, а порой и ожесточённое, сопротивление. Наиболее непримиримые споры в научной среде (и не только) происходят тогда, когда признание чужих эвристических догадок не то что основательно меняет, а даже очень болезненно разрушает сложившееся ранее мировоззрение человека. Именно такие случаи представляют собой то самое, что называется переоценкой ценностей. Это тогда, когда Платон является другом. В других, более прозаических, случаях причинами не всегда достаточно корректных научных споров могут быть личные амбиции, а то и корысти ради. Большей частью научные споры представляют собой битвы авторитетов, добросовестно усвоивших глубоко ошибочное представление о всемогуществе и непогрешимости хитроумных логических умозаключений. Случаются иногда научные битвы в виде избиения своих научных противников этими самыми авторитетами.

Великое множество эвристических догадок, возникших в процессе познания и освоения человеком окружающего его материального мира, свидетельствует о том, что они озарили значительное количество человеческих голов, из которого, однако, ещё ни одна не созналась в том, что хотя бы единственная догадка является результатом эвристического или какого-либо другого способа мышления. Настолько поголовное неведение означает, что сам процесс соответствующего мышления невозможно осознать, что вполне соответствует загадочной природе непредсказуемых эвристических догадок. Догадки, конечно, эвристические, а вот само мышление, в результате которого они возникают, является, скорее всего, образным. Процесс логического мышления представляет собой последовательность логических действий с ограниченным количеством абстрактных понятий, каждое из которых обладает ограниченным количеством свойств и взаимосвязей с понятиями другими, которые человек в состоянии представить себе все одновременно или в определённой последовательности. Процесс образного мышления представляет собой сопоставление различных образов, каждый из которых обладает огромным количеством свойств и взаимосвязей друг с другом.

В этой связи будет нелишним вспомнить утверждение Ленина о неисчерпаемости атома для более полного понимания неисчерпаемости его образа в представлении человека. Всё множество связей между отдельными образами и свойств каждого из них человек не в состоянии представить себе не только одновременно, но и в любой последовательности, так как некоторая, более значительная их часть находится вне доступной человеку непосредственно области его памяти. Тем более бессмысленным представляется последовательное сопоставление каждого отдельного свойства одного образа с каждым отдельным свойством образа другого, так как человек не сможет даже вспомнить о подавляющем большинстве из них. Однако такое сопоставление происходит в голове человека независимо от его воли и сознания, в результате которого и возникают эти самые эвристические догадки. Если принять во внимание, что представление о тех или иных свойствах, явлениях и процессах у каждого человека своё собственное, то можно утверждать, что в процессе образного мышления используется информация, содержащаяся в его генетическом коде.

Таким образом, только каждая отдельная эвристическая догадка является реальным практическим шагом в процессе дальнейшего познания и освоения человеком окружающего его материального мира в отличие от идеи, длительное продвижение в сторону осуществления которой само по себе требует не одного эвристического решения.

20 сентября 2018 года.

 

Дата публикации:

22 августа 2021 года

Электронная версия:

© НиТ. Cтатьи, 1997