Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Препринт / Наука сегодня
Начало сайта / Препринт / Наука сегодня

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Безумные идеи

Время, хранимое как драгоценность

Обычное в необычном (Энциклопедия чудес. Книга первая)

Пионеры атомного века

Приключения великих уравнений

Химия вокруг нас

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Невидимая Вселенная

Карим Хайдаров

Полная версия статьи «Невидимая Вселенная» (DOC, 330 кб).

Реферат

Еще 100 лет назад нобелевский лауреат Филипп фон Ленард указывал [1], что органы зрения человека, которым он доверяет более всего, охватывают лишь ничтожную часть всего спектра излучений во Вселенной. Подсознательно абсолютизируя свое зрение, усиленное телескопами Галилея и микроскопами Гука [2], человек возомнил, что оптическая часть излучения позволяет охватить всю Вселенную в неискаженном, ясном свете. Сформировавшиеся на основе оптического субъективизма представления о Вселенной на самом деле являются весьма искаженными и далекими от истины.

Мифы современной астрофизики

Миф отсутствия невидимого появился как бы сам собой, без чьего-либо злого умысла и заведомой лжи. Как говорится: раз мы этого не видим, – этого нет. Действительно, наблюдая небесные тела, мы используем только ничтожную долю всего природного спектра излучений – 0,39...0,78·10–6 м. Остальная часть спектра скрыта от нашего животного зрения. Эта узкая полоска спектра соответствует максимуму солнечного света, проникающего через атмосферу и достигающего поверхности Земли. Это естественно. Миллиарды лет зрение животных приспосабливалось именно к этому диапазону излучения, который было выгодно использовать для выживания в земных условиях, где предметы светились отраженным солнечным светом внутри солнечного «оптического» диапазона.

Однако, согласно закону, открытому Вилли Вином в 1893 году, максимум спектра собственного излучения любого тела линейно зависит от температуры тела и описывается формулой Вина [3].

Из нее непосредственно следует, что неосвещенные соседствующей звездой более холодные, чем Солнце небесные тела не видны в средства наблюдения оптического диапазона.

С другой стороны, еще в 1879 году Й. Стефан экспериментально нашел, а в 1884 году Л. Больцман теоретически доказал, что излучение нагретых тел возрастает пропорционально четвертой степени температуры, поэтому, светимость звезд отличающихся по температуре (частоте излучения) в 2 раза различается в 90 раз.

Таким образом, даже для космического телескопа им. Хаббла наблюдение далеких небесных тел, имеющих низкую температуру, является проблематичным. Для наземных телескопов это вообще неразрешимая задача, так как атмосфера Земли является фильтром, отсеивающим всё вне оптического диапазона и радиодиапазона.

«Красные», то есть холодные звезды, за исключением красных гигантов и сверхгигантов просто не наблюдаемы. Возможность обнаружения малых небесных тел, типа планет и комет, удаленных от Солнца на расстояния более дальние, чем орбита Плутона с помощью наземных оптических средств также практически полностью исключена.

Однако реально, как было умозрительно выведено И. Кантом [6, 7], такие тела должны составлять большую часть небесных тел во Вселенной.

Действительно, если мы примем концепцию Канта и поймем, что основной путь образования небесных тел, – это агрегация из более мелких тел за счет электромагнитных сил и сил Ван-дер-Ваальса на этапе образования космической пыли и мелких кометных тел, и за счет гравитации – на этапе образования боле крупных небесных тел – протопланет и звезд, то станет ясной причина природного распределения небесных тел по массам, которое наблюдательно для оптического диапазона было найдено Эдвином Солпитером в 1955 году, и которое можно смело продолжить как в меньшую, так и большую сторону

Физическая сущность солпитеровского распределения заключается в том, что процесс гравитационного захвата вещества является автомодельным для разных масштабов. Другими словами распределение Солпитера показывает, что основным процессом, определяющим распределение звездных масс, является гравитационная аккреция.

Кроме того, в последнее время на орбиту выведено несколько телескопов, охватывающих более широкий спектр излучения как в инфракрасную, так и в ультрафиолетовую часть. Наблюдения этих телескопов показывают, что в ближней части космоса – области нескольких парсек находится множество инфракрасных протозвезд – коричневых или, по-другому, инфракрасных карликов, продолжающих распределение Солпитера в инфракрасную область [10].

Считая, что окрестности Земли не есть особое место во вселенной, необходимо признать, что плотность распределения звезд должна быть индифферентна к расстоянию от Земли. Действительно, когда исследователи рассматривают ближайшее окружение Земли в радиусе порядка 5...7 парсек, где все звезды в основном обнаружены, такая индифферентная равномерность наблюдается. Далее, где обнаруживаются лишь более яркие объекты, констатируется наблюдательное отклонение от этого распределения [11], которое показывает лишь ограниченные возможности наблюдения. Естественно, дефицит звезд образуется из наименее ярких [12].

Принятие концепции И. Канта сразу же решает парадоксы современной астрофизики: несоответствие устойчивости наблюдаемых в оптическом диапазоне звездных систем теореме вириала (точнее несоответствие реальности современным взглядам на состав звездных систем только из оптически наблюдаемых объектов), выбрасывает мистификацию особой «темной материи» в составе звездных систем. Эта темная материя всего на всего микрокометы, кометные тела и протопланеты – протозвезды малых размеров. Обладая реальной массовой плотностью 0,1...1,0 кг/дм3, массивы этих тел, не препятствуя прохождению света через занимаемое ими пространство, сосредотачивают в этом пространстве громадные массы ненаблюдаемого вещества.

Прозрачность космического пространства, заполненного конденсированным веществом в t раз выше, чем заполненного газом

t = D / d,

где D – средний поперечник кусочка конденсированного вещества (пылинки, микрокометы); d – средний поперечник молекулы газа.

Количество этого темного и холодного вещества в галактиках легко получить из условия (теоремы) вириала найденного в 1870 году Рудольфом Клаузиусом [13...15]

2Ekin + Epot = 0,

где Ekin – кинетическая энергия системы звезд, Epot – потенциальная энергия этой системы.

Анализ звездных систем (галактик и шаровых скоплений) дает долю темного вещества 90...97%, что стыкуется с распределением Солпитера при продолжении его в инфракрасную сторону.

Миф громадных протозвезд

Миф громадных протозвезд появился усилиями релятивистов, апологетов алогичной гипотезы ОТО и ее дочерних моделей, таких как модель расширяющейся Вселенной Эйнштейна – Фридмана, использовавших несостоятельную гипотезу Дж. Джинса, 1903, о гравитационном коллапсе облаков протоматерии в громадные протозвездные объекты.

Гипотеза Джинса несостоятельна по причине ее опоры на условия, реально не существующие во Вселенной.

Первое необходимое условие ее реализации – это наличие некоторого газового давления в среде. Этого в космосе нет. Даже в «плотных» облаках космической пыли и газа давление практически отсутствует.

Второй физический нонсенс, вытекающий из модели Джинса – отсутствие (не сохранение) момента количества движения. Дело в том, что согласно той же теореме о вириале объект может быть устойчив, то есть не разбивается на несколько частей, если его кинетическая энергия Ekin не превышает половины потенциальной энергии Epot системы.

Это условие не может быть выполнено для единого тела при его коллапсе из газовой среды и приводит к дроблению первоначального облака на кластеры все более мелкого размера по мере уплотнения отдельных кластеров.

Реально, большие водородно-гелиевые облака конденсируются не в гигантские протозвезды, а в шаровые звездные скопления, являющиеся естественными устойчивыми образованьями.

Именно с шаровых скоплений, вопреки предрассудкам современной астрофизики, начинаются звездные системы, то есть шаровые скопления – это первые звездные образования из газовой среды. Шаровые скопления образуются постоянно, что видно из их статистического распределения во Вселенной. Увеличиваясь в размерах, шаровые скопления становятся эллиптическими галактиками, а затем, после обеднения газовой среды и сепарации вещества преобразуются в спиральные галактики.

Самые большие «протозвезды» – это красные сверхгиганты, – эфемерные короткоживущие образования, эволюционирование которых можно увидеть даже на шкале нескольких десятков лет [16]. Образовываясь за счет аккреции межзвездного газа в местах его плотных скоплений, красные гиганты светят за счет гравитационной энергии падающих масс газа.

Квазары, вопреки мифам современной астрофизики, являются не протозвездными, «космогоническими» объектами, а последней стадией звездной эволюции, так как эволюция небесных тел регулярно идет в сторону наращивания массы. Ведь, камни не падают в небо...

Миф эруптивного происхождения комет и других небесных тел

Несмотря на логическую ясность агрегационной концепции Канта, возник миф эруптивного происхождения комет и других небесных тел.

Этот миф возник не в физике, а стараниями великого математика Лагранжа, развивался феноменологически в трудах известного астронома Всехсвятского и имеет хождение до сих пор, хотя противоречит не только стройной концепции Канта о межзвездном происхождении комет, но и законам сохранения массы, энергии, момента, а также законам термодинамики.

Абсурдность этого мифа видна из следующего. Для того, чтобы какому-либо телу покинуть поле гравитации планеты или звезды, ему необходимо придать скорость не ниже второй космической, то есть скорости убегания, как говорят на Западе.

Вторая космическая скорость для типичной планеты составляет 5...50 км/с, что в 10...100 раз выше скорости ружейной пули и, соответственно, в 100...10 000 раз выше по энергетической емкости. Без специальных средств доставки (многоступенчатого ракетоносителя) эту скорость необходимо придать телу практически мгновенно. Есть ли такой физический процесс в Природе? До сих пор он неизвестен. Не предложен он ни в одной из эруптивных гипотез. Ни один из вулканов не обеспечивает и принципиально не может обеспечить такой скорости эрупции. Для возникновения таких скоростей температура внутри вулкана должна составлять сотни тысяч градусов, а прочность пород жерла, сдерживающего эту температуру и чудовищное давление должна превышать прочность тугоплавкого сопла современных ракетоносителей.

Стоит ли говорить о реальности эрупции тел с поверхности звезд, скорость убегания для которых составляет сотни километров в секунду?

Реально ли говорить о взлете с поверхности большой планеты, продвижении нежнейших снегоподобных комет и даже железных метеоритов с такой скоростью через плотные слои атмосфер планет без потери скорости и разрушения?

Лишь одиночные частицы продуктов ядерного распада и газовые массы, выносимые ударной волной ядерного взрыва в состоянии развить такую скорость. Однако это уже другая история, касающаяся в основном взрывов «новых» и «сверхновых» звезд, а также «солнечного ветра», являющегося продуктом дейтерий-тритиевых взрывов на Солнце и звездах [17].

Мифы QSO – квазизвездных объектов рождаются постоянно с момента открытия первого квазара в 1960 году. Рождение этих мифов связано с игнорированием астрофизиками классических физических законов и физических фактов, поклонением релятивистской мифологии.

Где корни этих мифов?

Миф о конечности жизни Вселенной

Как нам кажется в основополагающем мифе – мифе о конечности жизни Вселенной. Это первый самый глубокий корень этой мифологии, состоящий в воззрении на Вселенную, как на конечный во времени и пространстве объект. Он был рожден еще в дремучее средневековье европейскими теологами. Живя оседло в ограниченной «ойкумене», средневековому европейцу было органично и понятно представление о Вселенной, как некоей «общей деревне» или «самом большом городе», который был построен по указу свыше. Ее возрасту отводилось около 5 с половиной тысяч лет.

Только в 17-м веке после создания палеонтологии Робертом Гуком и последующих исследований геологов, биологов и историков европейцам стало ясно, что невозможно уложить возраст Вселенной в это прокрустово ложе. С каждым десятилетием развития естественных наук нижняя оценка возраста Вселенной всё увеличивалась, пока не достигла нескольких миллиардов лет к началу 20-го века. Благодаря расцвету релятивистской мифологии в 20-м веке воображаемый возраст Вселенной остановился на отметке 13...15 миллиардов лет.

Реально, согласно гравитационным расчетам и наблюдаемым параметрам, даже шаровые скопления, эти микрогалактики должны иметь возраст больше релятивистской вселенной. Еще большие времена необходимы для образования отдельных галактик, еще большие для таких гравитационных объектов, как Великий Аттрактор. Сегодня это установлено достоверно.

Миф «космогонической» природы квазаров

Миф «космогонической» природы квазаров возник на базе релятивистского представления о конечности вселенной, на базе гипотезы о доплеровском происхождении красного смещения квазаров и подчиненности этого смещения хаббловскому закону расстояний.

На самом деле, как показано исследованиями живого классика астрофизики Хальтона Арпа [18...31], квазары имеют собственное «внутреннее» красное смещение, никак не связанное с расстоянием до них.

По мнению автора, собственное красное смещение квазаров имеет гравитационную природу и определяется особым компактным фазовым состоянием вещества квазаров [32].

Как будет показано ниже, кажущаяся удаленность квазаров, то есть видимая слабая зависимость их яркости от расстояния может быть объяснена без привлечения «космогонических» расстояний.

Синхротронный миф

Миф синхротронной природы радиоизлучения галактик, остатков сверхновых и квазаров возник на базе ошибочного решения, что радиоспектр этих источников является нетепловым, раз его наклон в радиодиапазоне не соответствует наклону тепловых источников, и релятивистского толкования этого явления.

Пытаясь объяснить необъяснимое в рамках безэфирной физики релятивисты выдвинули гипотезу о синхротронном (тормозном) характере радиоизлучения галактик, см., например, [33].

Однако эта гипотеза не выдерживает критики и имеет приверженцев только благодаря тому, что до сих пор не выдвинуто разумного альтернативного решения этой проблемы.

Реально для существования синхротронного излучения не выполняется как минимум три условия:

Как будет показано ниже, радиоизлучение галактик носит тепловую природу. Тепловую природу носит также большая часть собственного излучения квазаров и рентгеновских звезд.

Рассмотрим теперь Вселенную в реальном широком спектре ее излучения, окружающем тонкую оптическую щель с двух сторон.

Оптическая щель в планковском спектре небесных тел

Собственное излучение небесных тел практически мало отличается от чернотельного, то есть подчиняется квантовому закону излучения Планка, 1900 [34] Максимум такого спектра приходится на виновскую частоту. Высокочастотная сторона f > ~5fmax подчиняется распределению Вина, 1896 [3], а низкочастотная часть f < ~0,01fmax распределению Рэлея, 1900 [3]. Если температура тела значительно отличается от солнечной 5763°K, то спектр излучения выглядит рэлеевским для тел намного горячее Солнца и виновским – для более холодных тел.

Другая особенность заключается в том, что как при смещении спектра в инфракрасную, так и в ультрафиолетовую сторону его доля в оптическом спектре падает, и наблюдаемое тело кажется излучающим меньшее количество энергии, чем это есть на самом деле.

Таким образом, для источников, имеющих температуру в миллионы градусов (рентгеновские звезды и квазары), доля попадающая в оптический диапазон Evis падает в 1000 раз с повышением температуры Tsour в 10 раз.

С другой стороны, тела, имеющие температуру ниже 700°K вообще не видны.

Из изложенного непосредственно следует, что приписывание одному и тому же рентгеновскому источнику разной физики рентгеновского и оптического излучений неправомерно. Оптическая светимость есть край теплового спектра.

Кажущееся отклонение оптической функции излучения ультрафиолетовых источников от закона Кеплера

В 1604 году Иоганн Кеплер открыл оптический закон, названный в последствие его именем. Этот закон определяет, что интенсивность излучения Eobs (яркость источника света) падает обратно пропорционально квадрату расстояния от источника Robs. Этот закон абсолютно ясен и соответствует закону сохранения энергии, так как площадь фронта волны излучения 4πR2 растет прямо пропорционально квадрату расстояния.

Однако не все так просто, когда мы имеем дело с реальным широким спектром излучения небесного тела и узким спектром оптического диапазона, охватывающего всего лишь одну октаву частот.

Хаббловское красное смещение является функцией расстояния (просьба не путать с собственным красным смещением галактик и квазаров!)

ZHublle + 1 = exp(ΔRH / c) = f0 / f,

где ΔR – рассматриваемый участок пути, преодоленный светом, f0 – частота излучения в начале пути, f – частота кванта в конце рассматриваемого пути, H – постоянная Хаббла, c – скорость света.

Отсюда со всей очевидностью вытекает, что для удаленных рентгеновских источников спектр их излучения сдвигается в красную сторону, то есть приближается к оптическому диапазону. Вследствие этого доля энергии этого спектра, попадающая в оптический диапазон растет.

Таким образом, результирующая доля оптического излучения рентгеновского источника есть суперпозиция кеплеровского квадратичного рассеяния энергии, «спектрального сближения» и «старения света». В сумме это дает сложную картину изменения яркости источника с расстоянием, делая далекие рентгеновские источники наблюдательно ярче. То же самое происходит по другой причине. Спектр источников, имеющих собственное красное смещение, смещен для наблюдателя на это самое красное смещение. Соответственно этому ультрафиолетовые и рентгеновские источники становятся наблюдательно ярче, в пределе согласно, а для близких ультрафиолетовых источников согласно их доле в спектре Планка.

Совместное влияние этих факторов создает ощущение независимости излучения от расстояния, так как будто ультрафиолетовый объект находится на расстоянии значительно большем, нежели это есть на самом деле, создавая иллюзию их «космогонической» удаленности.

Для наглядного представления на рисунке 6 показаны энергетические зависимости для света, распространяющегося на «космогонических» расстояниях и энергетические функции его оптического наблюдения.

Наблюдаемая оптическая яркость квазаров практически неизменна на больших расстояниях, в то время, как обычные оптические звезды быстро теряются во мгле Космоса. Именно поэтому в далеких галактиках видны только их рентгеновски активные ядра и квазары.

Для того, чтобы понять явления, происходящие в радиодиапазоне, необходимо рассмотреть свойства самого эфира, который является средой, носителем электромагнитных волн.

Эфир – среда-носитель электромагнитных волн

Эфир, как и другие физические среды, обладает плотностью, вязкостью, поглощением, волновым сопротивлением, магнитной и диэлектрической проницаемостями.

Рассматривая вопрос о плотности эфира поверхностно, руководствуясь привычными предрассудками, не стоит иронизировать по поводу плотности эфира, 2,818 [кг/м3], найденной автором [35].

На самом деле это не гравитационная плотность, как у вещества, а инерционная плотность, как у физических полей, в том числе света, точно в том смысле, как понимал эту плотность ρ и ее связь с энергией E и скоростью света c Николай Алексеевич Умов, 1870 [36...40]:

dE / dρ = c222].

задолго до спекуляций 20-го века.

Как и обычное вещество, эфир обладает свойством температуры, которая в обычных условиях равна 2,72°K (найдено проф. Эрихом Регенером в 1933 году [41], а не Пензиасом и Вильсоном в 1964).

Соответственно, эфир имеет планковский спектр излучения черного тела.

Поглощение энергии световых квантов эфиром определяется процессом релаксации, возбуждения вынужденных колебаний его элементов – амеров проходящей через эту среду электромагнитной волной.

Обладая инерцией, каждый амер представляет собой гармонический осциллятор частоты ωTa, определяемой индивидуальной температурой амера Ta. Как это установил Макс Планк термодинамически сбалансированный статистический ансамбль таких излучателей дает распределение, характерное для «черного» тела.

Однако каждый амер в отдельности – это резонатор с очень большой добротностью. Легко видеть, что для высоких частот (для оптического диапазона ω/ωTa ≈ 2000) отклик на внешнее воздействие является обратно квадратичной функцией частоты.

С другой стороны, энергия этих вынужденных колебаний есть энергия, отнимаемая у света. То есть энергия светового кванта в связи с однородностью эфира уменьшается со временем по экспоненциальному закону

Коэффициент затухания, проявляющий себя на межгалактических расстояниях, известен – это постоянная Хаббла.

С другой стороны коэффициент затухания волновых колебаний практически в любой изотропной среде можно выразить через кинематическую вязкость среды.

Отсюда видно, что вязкость эфира для высоких частот есть обратно квадратичная функция частоты электромагнитных волн.

Это свойство обеспечивает кажущееся отсутствие дисперсии вакуума в инфракрасном, оптическом и ультрафиолетовом диапазонах. Падение вязкости с частотой полностью компенсируется таким же возрастанием циклов поглощения, диссипации энергии кванта, и дисперсия оптических волн в эфире не наблюдаема. Это делает эфирную среду «невидимой» в узком оптическом диапазоне, порождая релятивистскую мифологию об отсутствии эфира.

Для разоблачения этой мифологии рассмотрим процесс взаимодействия электромагнитных волн и эфира более подробно.

Рэлеевское рассеяние электромагнитных волн в эфире

В 1871 году лорд Рэлей вывел закон рассеяния света на малых частицах, который можно распространить и на случай рассеяния электромагнитных волн в эфире [42].

Действительно, рассматривая формулу Рэлея можно увидеть, что здесь присутствуют два мультипликативных фактора:

Первый фактор можно определить как функцию напряженности электрического поля, создаваемого электромагнитной волной.

В свою очередь напряженность электрического поля, создаваемая фотоном есть квадратичная функция частоты.

Физически это означает, что связанный эфир, размер доменов которого определяет диэлектрическую проницаемость эфира, обладает инерционными свойствами с характеристической частотой много ниже собственной частоты амера свободного фазового эфира ωTa, что эквивалентно высокочастотной аппроксимации функции отклика гармонического осциллятора.

Второй фактор имеет более сложный характер, определяемый термодинамическим рассеянием энергии квантом света.

Здесь можно выделить две области частот:

В радиодиапазоне превалируют волновые свойства электромагнитной волны. Плотность энергии единичного кванта в радиодиапазоне ниже плотности энергии квантов среды. В термодинамических системах переход энергии от объектов с меньшей плотностью энергии к объектам с большей плотностью энергии невозможен.

В квантово-оптическом диапазоне, когда частота волны, а значит ее эффективная температура выше соответствующих параметров среды, происходит процесс диссипации, аналогичный закону излучения Стефана – Больцмана.

В отличие от закона Стефана – Больцмана здесь необходимо учесть, что процесс излучения идет не в пустом пространстве, а в эфире.

Таким образом, в связи с уменьшением эффективной площади кванта с квадратом частоты, уровень диссипации энергии пропорционален второй степени разности частот волны и эфира.

Согласно закону Кирхгоффа планковское чернотельное излучение и поглощение эфира должно приводить к поглощению электромагнитных волн близких к 3·1011 Гц (λ = 1 мм) на «космогонических» расстояниях. Оптическая толщина эфира D = c / H = 13,4·109 лет. То есть вся оптически наблюдаемая вселенная есть тонкий поверхностный слой толщи реальной Вселенной.

Яма в наблюдаемых спектрах небесных тел в области частот 3·1011 Гц (в том числе «нетепловой» наклон радиоспектров) частично объясняется этим. Однако, есть еще одно явление, поражающее своими масштабами наблюдателей. Это мощное радиоизлучение некоторых галактик, квазаров и пространства в местах произошедших в прошлом взрывов сверхновых. Рассмотрим это явление подробно.

Комбинационное излучение эфира в радиодиапазоне

Как было показано, амеры свободного фазового эфира, будучи несвязанными гармоническими осцилляторами, обладают чрезвычайно большой добротностью.

В течение длительного времени релаксации, медленно меняя свою индивидуальную частоту, они распределяются в термодинамически уравновешенный ансамбль, представляемый распределением Планка.

Однако в эфире есть еще два других сорта амеров – связанный фазовый эфир и корпускулярный эфир, температура которых может не быть равной температуре свободного эфира, нагреваемого небесными телами. Теплоемкость связанного и корпускулярного эфиров настолько велика, что их планковское черно-тельное распределение сугубо постоянно.

В связи с соизмеримостью размеров амеров связанного фазового и свободного эфиров, время от времени между ними возникает взаимодействие, порождающее излучение низкой комбинационной частоты:

fcomb = | fboundffree | .

Эта частота есть частота радиоизлучения эфира в неравновесном состоянии. Такое состояние возникает при мощном нагреве эфира, когда температура свободного эфира Tfree существенно отличается от стабильной температуры Tbound основы – эфира связанного и корпускулярного.

Мощность такого радиоизлучения можно определить с помощью модифицированной автором формулы Стефана – Больцмана.

Таким образом, эфир, нагретый квазарами и сверхновыми, должен излучать в радиодиапазоне. И реально, это наблюдаемо в виде «радио-теплых» мест во Вселенной. Хорошую иллюстрацию дают снимки CYGNUS A. На них отчетливо видно понижение температуры эфира, то есть увеличение длины волны радиоизлучения с удалением от галактики. Таким образом «радио объекты» на этих снимках – пустой и нагретый эфир.

Межзвездная дисперсия света на эфире

Более 30 лет назад было обнаружено явление межзвездной дисперсии света, когда была найдена разница в моменте прихода импульсов света и радиоимпульсов пульсаров. Ясно, что имея широкий спектр излучения – от рентгена до радио первоначальный импульс излучения пульсара претерпевает «расслоение», временную дисперсию в связи с разницей скоростей высокочастотных и низкочастотных волн.

Релятивисты не могли признать дисперсию как атрибут среды – носителя. Это означало бы крах теории относительности. В связи с этим был сочинен миф о существовании горячей плазмы, равномерно рассеянной в космическом пространстве.

Миф о космической плазме неприемлем по следующим причинам:

Реально эфир обладает собственной дисперсией из-за зависимости его диэлектрической восприимчивости от частоты волны света.

Непредвзятый и внимательный анализ данных по межзвездной дисперсии показывает, что ее поведение описывается найденными автором закономерностями, а наблюдаемые отклонения от линейной зависимости меры дисперсии (DM) некоторых пульсаров определяются параметрами облака вещества, находящегося в процессе рассеяния после взрыва сверхновой.

Как показывают исследования автора, диспергирующее влияние рассеянного сверхновой вещества (холодных электронов) удовлетворительно описывается формулой

Kform = exp(–t / Tscat)(1 – exp(–t / Tform),

где Tscat – постоянная времени рассеяния облака вещества; Tform – постоянная времени формирования облака.

Автором найдены такие средние значения: Tscat = 1,2 млн лет, Tform = 5900 лет. Экспериментальный данные вписываются в эту модель с коэффициентом корреляции 0,9985.

Выводы

Опираясь на классические работы Иоганна Кеплера, Роберта Гука, Иммануила Канта, Рудольфа Клаузиуса, Людвига Больцмана, Джона Рэлея, Николая Умова, Филиппа Ленарда, Вилли Вина, Макса Планка, Эриха Регенера, Эдвина Хаббла, Эдвина Солпитера, Хальтона Арпа и других современных астрофизиков, автор попытался представить перед читателем истинный лик Вселенной, резко отличающийся от релятивистски свернутого в птолемеевское яйцо мира 20-го века.

В данной работе показано, что:

 

Полная версия статьи «Невидимая Вселенная» (DOC, 330 кб).

 

Источники информации:

  1. Ленард Ф. О принципе относительности, эфире, гравитации. – Москва, ГосИз, 1922.
  2. Гук Р. Микрография (Клеточное строение живых существ). – Лондон, 1665.
  3. Яворский Б.М., Детлаф А.А. Справочник по физике. – М., «Наука», 1968.
  4. Климишин И.А. Астрономия наших дней. – М., Наука, 1983.
  5. Курт В.Г. Прозрачность земной атмосферы. – Астронет.
  6. Кант И. Всеобщая естественная история и теория неба. – Кенигсберг, 1755
  7. Кант И. Седьмое рассмотрение. Космогония. – Кенигсберг, 1761.
  8. Солпитер Э. Функция светимости и звездная эволюция. – 1955.
  9. http://webast.ast.obs-mip.fr/hyperz/hyperz_manual1/node7.html
  10. http://irsa.ipac.caltech.edu/
  11. http://nstars.nau.edu/index.cfm?fuseaction=nstars.missing
  12. http://nstars.nau.edu/index.cfm?fuseaction=nstars.luminosity
  13. Clausius, R.J.E. Phil. Mag. 1870, 40, 122.
  14. Clausius, R.J.E. Compt. Rend. 1870, 70, 1314.
  15. Clausius, R.J.E. Ann. Physik 1870, 141, 124.
  16. http://www.sao.ru/Doc-cp/Science/results/arch-galaxy.html
  17. Хайдаров К.А. Реальная динамика Солнца. – Алматы, 2004.
  18. Arp, H.C., 1987, «Quasars, Redshifts and Controversies» (Berkeley, Interstellar Media).
  19. Arp, H.C., 1996, A&A 316, 57.
  20. Arp, H.C., 1997, A&A 319, 33.
  21. Arp H.C. Discordant arguments in compact groups, Astroph. J., 1997, p 74...83.
  22. Arp, H.C., 1998, «Seeing Red»(Apeiron, Montreal).
  23. Arp H.C. Evolution of Quasars into Galaxies and its Implications for the Birth and Evolution of Matter, (Apeiron, Montreal, 1998).
  24. Arp, H.C., 1999, A&A 341, L5.
  25. Arp, H.C., 2003, «A Catalogue of Discordant Redshift Associations» (Apeiron, Montreal).
  26. Arp, H.C., Bi, H.G., Chu, Y., Zhu, X., 1990 A&A 239, 33.
  27. Arp, H.C., Burbidge, E.M., Chu, Y., Zhu, X., 2001 ApJ 553, L11.
  28. Arp, H.C., Burbidge, E.M., Burbidge, G. The Double radio source 3C 343.1: A galaxy QSO pair with very different redshifts, 2004, A&A 414, L37.
  29. Arp H.C. Anomalous Redshifts, 2005.
  30. Arp, H.C., Roscoe D., C. Fulton C. Periodicities of Quasar Redshifts in Large Area Surveys. – Arxiv, 2005.
  31. Arp H.C. Faint Quasars Give Conclusive Evidence for Non-Velocity Redshifts, 2005.
  32. Хайдаров К.А. Сверхсжатые состояния вещества и квазары. – Алматы, 2005.
  33. Гинзбург В.Л., Сыроватский С.И. Космическое магнитотормозное (синхротронное) излучение. – УФН, 87, 1, 1965.
  34. Планк М. К закону распределения энергии в нормальном спектре. – Annalen der Physik, V.4, p.553, 1901.
  35. Хайдаров К.А. Термодинамика эфира. – Алматы, 2003.
  36. Умов Н.А. Теория простых сред и ее приложение к выводу основных законов электростатических и электродинамических взаимодействий. Одесса, 1873.
  37. Умов Н.А. Уравнения движения энергии в телах (1874). – Избранные сочинения.
  38. Умов Н.А. Прибавление к работе «Уравнения движения энергии в телах» (1874).– Избранные сочинения.
  39. Umov N.A. Albeitung der Bewegungsgleichungen der Energie in continuirlichen Körpern (Вывод уравнения движения энергии в непрерывных телах). «Zeitschrift für Mathematik und Physik», Bd. XIX, 1874, H. 5.
  40. Umov N.A. Ein Theorem ьber die Wechselwirkungen in Endlichen Entfernungen. (Теорема относительно взаимодействий на расстояниях конечных)., «Zeitschrift für Mathematik und Physik», Вd. XIX, 1874, Bd. XIX, 1874, H. 2.
  41. Regener, E., Zeitschrift für Physik 80, 666...669, 1933.
  42. Rayleigh J.W. – Phil. Mag. 41, 107...120, 274...279, 1871.
  43. http://www.mpifr-bonn.mpg.de/public/science/cyga.html
  44. Thomas Krichbaum T. et al., 1998, A&A 329, 873.

Дата публикации:

24 декабря 2005 года

Электронная версия:

© НиТ. Препринт, 1997

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика