Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Препринт / Наука сегодня
Начало сайта / Препринт / Наука сегодня

Научные статьи

Физика звёзд

Физика микромира

Научно-популярные статьи

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Безумные идеи

Законы Паркинсона

Механизм ответственной власти

Популярная библиотека химических элементов

Смотри в корень!

Цепная реакция идей

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Препринт

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Кольцевой орбитальный резонанс

Кирилл БУТУСОВ

В 1978 г. нами была опубликована работа «Золотое сечение в Солнечной системе» [1], где было показано, что в Солнечной системе наблюдается явление резонанса волн биений, приводящее к тому, что периоды и частоты обращений планет образуют геометрическую прогрессию со знаменателями Ф = 1,6180339 и Ф = 2,6180339, хорошо отображаемые числовыми рядами: Фибоначчи (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987...) и Люка (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843...), см. табл. 1, где n – числа Люка и Фибоначчи, а δ% – отклонение от резонансного значения nT в %.

Таблица 1

ТелоТ, летnnT, летδ%
Ме0,2408537790,8001,98
В0,6152114488,5900,50
З1,000008989,0000,03
Ма1,880894788,4010,71
С29,4577388,3730,74
   89,0330,79
Ц4,6051882,8930,10
Ю11,862783,0350,06
У84,015184,0151,24
Н164,781/282,3940,71
П247,691/382,5650,50
   82,9800,52

Однако, кроме описанных в статье случаев проявления «золотого сечения» в Солнечной системе, нам удалось выявить ещё ряд новых интересных примеров такого же рода. В частности, мы обнаружили, что величины, обратные эксцентриситетам планетных орбит также близки к числам Люка и Фибоначчи (см. табл. 2, где e – эксцентриситет орбиты, а n – число Люка или Фибоначчи).

Таблица 2

Тело1/en1/neδ%
П4,02141,00540,44
Ме4,86350,97262,91
Ма10,711110,97372,80
Ц13,157131,01211,10
С17,946180,99700,40
Ю20,652210,98341,79
У21,195211,00930,82
З59,772551,08678,56
Н116,6861230,94865,52
В147,0581441,02122,01
   1,00102,63

Так как орбиты планет эллиптичны и постепенно прецессируют, то каждая из них занимает кольцевую область между двумя круговыми орбитами с радиусами:

rπ = (1 – e)a

(1)

rα = (1 + e)a

(2)

где rπ – радиус орбиты в перигелии,
rα – радиус орбиты в афелии,
a – большая полуось орбиты.

Этим круговым орбитам соответствуют свои периоды, а интервал периодов может быть найден по следующей формуле:

(3)

где T – период обращения планеты, а ΔT – будет шириной орбиты, выраженной в терминах периодов. Назовем эту величину «периодом ширины орбиты». При этом оказалось, что «период ширины орбиты» связан с перодом обращения планеты, расположенной через одну орбиту ближе к Солнцу, следующим соотношением:

kΔTn = Tn–2 ,

(4)

где k – целое число, чаще всего, близкое к единице, т.е. имеет место своеобразный резонанс, названный нами «кольцевым резонансом» (см. табл. 3).

Таблица 3а

ТелоΔT, летkkΔTn, лет
В0,012550,0627
З0,050150,2509
М0,526610,5266
Ц1,049711,0497
Ю1,722811,7228
С4,923514,9235
У11,890111,890
Н4,237729,659
П184,280,592,140

Таблица 3b

TeлоT, летkΔTn / kΔTn–2δ%kkΔTn / kΔTn–2δ%
Сл0,06940,90310,011/20,9930,61
Ме0,24081,041

4,8

24/51,0000,07
В0,61520,85516,07/60,9980,08
З1,00001,0495,620/210,9990,02
Ма1,88080,9158,412/110,9990,02
Ц4,60521,0697,614/150,9970,16
Ю11,8621,0020,81/11,0020,28
Ст29,4571,0061,37/11,0060,73
У84,0151,09610,35/110,9970,24
  0,9937,2 0,9990,24

Как видно из таблицы, при грубой подборке коэфициента k он чаще всего принимает значение 1 и даёт отклонение от резонансности, равное 7,2%, а при более тонкой подборке коэфициента, когда он не целочислен, но равен отношению небольших чисел, это отклонение имеет величину только 0,24%. Учитывая, что на самом деле мгновенный период обращения планеты меняется в широких пределах, можно считать, что резонанс всегда соблюдается даже при грубой подборке k. Как оказалось, экваториальный период вращения Солнца и все «периоды ширины орбит» планет земной группы имеют между собою общий резонанс. Для планет, внешних по отношению к Земной орбите также имеет место общий для них резонанс. Причём средние отклонения от резонансности для обеих групп планет не превышают 0,55%. Период общего резонанса для внешних планет превосходит аналогичный период для земной группы планет в 28 раз (см. табл. 4).

Таблица 4

ТелоΔTnΔT / nδ%
В0,012520,006270,19
З0,050180,006270.16
Сл0,0694110,006310,86
Ме0,1483240,006181,35
Ма0,5266840,006270,10
   0,006260,53
Ма0,526630,175530,30
Ц1,049760,174950,02
Ю1,7228100,172281,58
Н4,2370240,176540,88
Ст4,9235280,175840,48
У11,890680,174850,08
   0,175000,55

Если рассмотреть ширину орбиты в терминах частот обращений планет, то мы получим «частоту ширины орбиты». Как выяснилось, эти величины, нормированные на «частоту ширины орбиты» Нептуна, образуют числовые ряды, близкие к числам Люка и Фибоначчи (см. табл. 5) со средним отклонением от резонансности меньше 3%.

Таблица 5

ТелоΔν, год–1Δν / ΔνНnΔν / nΔνНδ%
Н0,0001561,000011,00001,62
У0,00169010,8346110,984963,17
П0,00330521,1871211,008900,72
С0,05700036,5384341,074655,75
Ю0,01228678,7564761,036261,97
В0,033516212,5641991,068165,11
З0,050200321,7943220,999361,68
Ц0,049938320,0513220,993942,23
Ма0,150818966,7829870,979513,69
    1,016192,88

Мы рассматривали до сих пор интервалы периодов и частот, определяемых через радиусы круговых орбит, ограничивающих эллипсы орбит. Однако, интересно рассмотреть разности мгновенных периодов обращения планет в афелиях и перигелиях орбит т.е. интервал, в пределах которого меняется мгновенный период при движении планеты по орбите. Назовём этот интервал «девиацией периода» Расчёт её будем вести по формуле:

(5)

При этом оказалось, что наблюдается резонанс между «девиацией периода» планеты и периодом соседней планеты, расположенной ближе к Солнцу:

kΔT *n = T *n–1

(6)

См. табл. 6, где значки π, 0, α – определяют значения мгновенных периодов в перигелии, на среднем расстоянии и в афелии. Мы видим, что чаще всего наблюдается k = 2. Среднее отклонение от резонанса равно 1,75%.

Таблица 6

ТелоΔTn*kk ΔTn*ТелоT*n–1kΔT*n / ΔT*n–1δ%
Ме0,20241/30,0674Сле0,06940,970992,58
В0,016790,1505Меπ0,15530,969682,72
З0,066990,6023Вπ0,60680,992530,35
Ма0,544221,0884Зα1,03381,052795,69
Ц1,40404/31,8720Ма01,88080,995280,08
Ю2,300024,6000Ц04,60520,998880,28
Ст6,5757213,1514Юα13,05391,007461,14
У15,8730231,7460Сα32,88290,965423,17
Н5,64941584,7412У084,01521,008641,26
П254,3367/11161,850Нπ161,9810,999190,31
      0,996081,75

На самом деле, учитывая, что изменение мгновенного периода происходит в широких пределах, мы можем считать, что резонанс всегда соблюдается гораздо точнее.

Наконец, рассмотрим соотношения экстремальных значений мгновенных периодов на соседних орбитах в ближайших апсидах. Например, отношение мгновенного периода в афелии орбиты к такому же периоду, но уже в перигелии последующей орбиты, расположенной дальше от Солнца (см. табл. 7, где T1* – мгновенный период в афелии орбиты, а T2* – мгновенный период в перигелии последующей). Исключение составляют только Меркурий,где вместо перигелийных и афелийных периодов взяты средние периоды и Венера, где вместо афелийного периода взят средний период. Резонансный коэфициент равен отношению небольших чисел, на 85% состоящих из чисел Люка (2, 3, 4, 7, 11).

Анализ таблицы показывает, что эти соотношения близки к резонансным со средним отклонением от резонансности 0,53%.

Таблица 7

ТелоT2*ТелоT1*kkT1*T2* / kT1*δ%
Ме00,2408Сле0,06947/20,24320,9903041,03
Вπ0,6068Ме00,24085/20,60211,0078970,73
Зπ0,9669В00,615211/70,96671,0002020,03
Маπ1,6162Зα1,033811/71,62460,9947910,57
Цπ3,9432Маα2,160411/63,96080,9955540,50
Юπ10,7539

Цα

5,34722/110,69441,0055640,50
Стπ26,3072Юα13,05392/126,10791,0076330,70
Уπ76,3596Стα32,88297/376,72680,9952130,53
Нπ161,981Уα92,23267/4161,4071,0035570,30
Пπ144,369Нα167,6306/7143,6831,0047700,42
      1,0005480,53

 

Выводы:

  1. Величины, обратные эксцентриситетам орбит планет образуют числа, близкие к числам Люка и Фибоначчи.
  2. Периоды ширины орбитальных колец находятся в резонансе с периодами планет, расположенными через одну орбиту ближе к Солнцу.
  3. Частоты ширины орбитальных колец находятся в резонансе с частотами обращения планет, расположенных дальше от Солнца через одну орбиту.
  4. Периоды ширины орбитальных колец как земной группы планет, так и планет, внешних по отношению к земной орбите, образуют две группы тел с общими резонансами внутри группы.
  5. Частоты ширины орбитальных колец, нормированные на частоту ширины орбиты Нептуна, образуют числовой ряд близкий к числам Люка и Фибоначчи.
  6. Девиации периодов обращений планет находятся в резонансе с периодом обращения соседней планеты, расположенной ближе к Солнцу.
  7. Экстремальные периоды в ближайших апсидах соседних планет находятся в резонансе, а числовые коэфициенты резонансов на 85% состоят из чисел Люка (2, 3, 4, 7, 11).

Имеют место ещё и другие резонансные соотношения для частот ширины орбит, девиаций частоты и экстремальных значений частот планетных орбит, но ввиду ограниченности объёма работы мы этих результатов вычислений не приводим.

 

Литература

К.П. Бутусов. «Золотое сечение в Солнечной системе». Проблемы исследования Вселенной, вып. 7. М.-Л., 1978.

Об авторе:

Бутусов Кирилл Павлович,
кандидат физико-математических наук, профессор.
190121, Санкт-Петербург, Английский пр. 5, кв. 18.
тел. 113-8511

Дата публикации:

11 декабря 2000 года

Электронная версия:

© НиТ. Препринт, 1997

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2016
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика