Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Совместные проекты / ЛЭСМИ
Начало сайта / Совместные проекты / ЛЭСМИ

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

В поисках «энергетической капсулы»

Доктор занимательных наук

Люди и биты. Информационный взрыв: что он несет

Пионеры атомного века

Луи де Бройль. Революция в физике

Физики продолжают шутить

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Технология устойчивого оценивания регрессионных моделей

Радченко С.Г.
НТУУ «Киевский политехнический институт», г. Киев

Пилотируемые полеты в космос: Восьмая Международная научно-практическая конференция

В [1] изложены пути повышения эффективности экспериментальных исследований сложных систем и процессов, которые целесообразно использовать в космических экспериментах.

Разработана концепция устойчивого планирования многофакторного эксперимента, позволяющая выбрать неизвестные исследователю структуры «истинных» статистических моделей полиномиального вида, линейных по параметрам, и получить адекватные модели. Разработаны и реализованы в алгоритмах RASTA1, RASTA2 методы получения квазиортогональньх и квази-D-оптимальных планов экспериментов, многофакторных регулярных последовательных планов экспериментов для числа факторов k = 2...11 и числа опытов N = 5...64 [2]. Эти алгоритмы по числу учитываемых факторов и требуемому числу опытов соответствуют условиям и возможностям проведения космических экспериментов на лабораторных модулях МКС.

Многофакторные статистические регрессионные модели, линейные относительно параметров и нелинейные, в общем случае, относительно факторов, получили значительное распространение в научных и прикладных исследованиях. Использование регрессионных моделей при исследовании сложных систем позволяет получить необходимую информацию для создания наукоемких изделий, высоких технологий, интеллектуальных средств измерений, новых материалов. При повышении сложности систем, процессов и объектов регрессионные модели являются универсальным средством получения качественной и количественной информации о связи факторов и критериев качества.

Получение регрессионных моделей в прикладных исследованиях связано с решением некорректно поставленных задач. Поиск регрессионной модели будет корректным, если решение задачи существует, оно единственное и устойчивое. Для корректного решения регрессионной задачи необходимо выполнение предпосылок регрессионного анализа, полнота исходной информации о свойствах моделируемой системы. Многочисленная практика решения прикладных задач показала, что предпосылки регрессионного анализа часто не выполняются, а необходимая информация для принятия решения в большинстве случаев отсутствует. Необходима разработка таких методов получения регрессионных моделей, которые были бы устойчивы, т. е. мало бы изменяли полученные решения по отношению к выполнению условий и доступной исследователю информации.

Разработана система получения устойчивых регрессионных многофакторных моделей, включающая три подсистемы: 1) устойчивое планирование многофакторных экспериментов; 2) выбор устойчивой структуры статистической модели, не известной исследователю; 3) устойчивое оценивание коэффициентов статистической модели [2].

Важнейшим и типичным в прикладных задачах является нарушение предпосылки о физической и статистической независимости управляемых факторов X1, ..., Xk:

rij(Xi, Xj) = 0; 1 ≤ i < jk,

где rij(Xi, Xj) – коэффициент парной корреляции факторов Xi, Xj [2, с. 61].

Взаимная коррелированность факторов (мультиколлинеарность) приводит к существенному изменению значений определяемых коэффициентов регрессии: коэффициенты становятся смещенными, их среднеквадратичные ошибки могут существенно возрасти; обоснованное применение статистических критериев t (Стьюдента) и F (Фишера) невозможно.

В указанных условиях необходимо применять методы устойчивого оценивания статистических моделей, подробное изложение которых приведено в [2, с. 209...300]. Разработаны алгоритмы RASTA4, RASTA4 К топологического отображения прообраза факторного пространства в образ. Алгоритмы RASTA5.1, RASTA10, RASTA14 позволяют создать собственную кодированную систему координат в прообразе и образе и устойчиво (число обусловленности cond(XТX) = 1...10) оценить коэффициенты при сколь угодно большой исходной мультиколлинеарности факторов.

Важной задачей является получение уравнения регрессии в условиях отсутствия информации о его структуре. Разработано устойчивое оценивание структуры, исходя из свойств устойчивого плана эксперимента и структуры модели, соответствующей полному факторному эксперименту. Выделение необходимой и достаточной структуры производится с использованием алгоритма RASTA3 и программного средства «Планирование, регрессия и анализ моделей» (ПС ПРИАМ) [2, с. 179...182, 45...47].

Устойчивость коэффициентов статистических моделей обеспечивается путем введения в модели ортогональных и слабо коррелированных эффектов (|rij(Xi, Xj)| ≤ 0,3...0,4) и нормированием эффектов.

Разработанная технология устойчивого оценивания регрессионных моделей апробирована при решении различных задач в области технических, технологических, материаловедческих и биологических систем [3...8], что соответствует ряду направлений научно-прикладных исследований на МКС.

 

Литература:

  1. Радченко С.Г. Повышение эффективности экспериментальных исследований сложных систем и процессов // 7-я Международная научно-практическая конференция «Пилотируемые полеты в космос» (14...15 ноября 2007 г., Звездный городок): Сб. тез. – Звездный городок: РГНИИЦПК им. Ю.А. Гагарина, 2007. С. 59–61.
  2. Радченко С.Г. Устойчивые методы оценивания статистических моделей: Монография: – Киев: ПП «Санспарель», 2005, 504 с.
  3. Радченко С.Г. Математическое моделирование технологических процессов в машиностроении. – Киев: ЗАО «Укрспецмонтажпроект», 1998, 274 с.
  4. Радченко С.Г., Бабич П.Н. Информационная коррекция переменных систематических погрешностей средств измерений и измерительных информационных систем // Радиоэлектроника и информатика. 1999, №3(8). С. 82–88.
  5. Многофакторная математическая модель термонапряженной электроизоляции / Иерусалимов М.Е., Соколовский С.А., Радченко, С.Г. Романенко Ю.В., Лапач С.Н. // Электричество. 1991, №8. С. 40–45.
  6. Кравченко М.А., Ларин В.К., Радченко С.Г. Термическая обработка алюминиевых бронз, обладающих эффектом запоминания формы // Металловедение и термическая обработка металлов. 1990, №12. С. 37–40.
  7. Оптимизация технологических условий сварки полиэтиленовых труб / С.Г. Радченко, Ю.С. Бурбело, Э.В. Котенко, С.Н. Лапач, Ю.А. Сидоренко, B.C. Лищинский // Пластические массы. 1988, №9. С. 29–31.
  8. Лаборатория экспериментально-статистических методов исследований (ЛЭСМИ).

Ранее опубликовано:

Радченко С.Г. Технология устойчивого оценивания регрессионных моделей // Пилотируемые полеты в космос: VIII Международная науч.-практ. конф., 28...29 окт. 2009 г., Звездный городок, Московская обл., Российская Федерация: сб. тезисов. – Звездный городок: ФГБУ «НИИ ЦПК им. Ю.А. Гагарина», 2009. – С. 115–118.

Дата публикации:

29 декабря 2009 года

Электронная версия:

© НиТ. Совместные проекты, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика