Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Книги / Популярная библиотека химических элементов
Начало сайта / Книги / Популярная библиотека химических элементов

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Во главе двух академий

Как мы видим то, что видим

Обычное в необычном (Энциклопедия чудес. Книга первая)

Пионеры атомного века

Ум хорошо...

Этюды о Вселенной

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Популярная библиотека химических элементов

Резерфордий (курчатовий)

104
Rf
2 10 32 32 18 8 2
РЕЗЕРФОРДИЙ
[261]
6d27s2

104-й элемент был впервые синтезирован в Дубне в 1964 г. Его получила группа ученых Лаборатории ядерных реакций во главе с Г.Н. Флеровым.

Для синтеза элемента №104 в циклотроне Объединенного института ядерных исследований была выбрана реакция

24294Pu + 2210Ne → 260104 + 410n.

Математически все очень просто, но полное слияние ядер плутония и неона с последующим распадом ядра 264104 на изотоп 260104 и четыре нейтрона происходит только в одном из нескольких миллиардов случаев. Почему так редко?

Коротко о физике

Далеко не все ядра неона взаимодействуют и сливаются с ядрами плутония. Но даже если слияние произошло, то образовавшееся новое ядро оказывается сильно возбужденным. Из-за этого возбуждения оно не может сохранить свою начальную массу (22 + 242 = 264), а обязательно освобождается от избытка энергии, главным образом путем деления на два ядра примерно равной массы или, реже, выбрасывая альфа-частицы, нейтроны, протоны.

Схема установки для экспрессного разделения короткоживущих изотопов

Рис. 11. Схема установки для экспрессного разделения короткоживущих изотопов
1 – мишень; 2 – пучок ускоренных ионов; 3 – газовый тракт; 4 – ловушка для твердых частиц; 5 – детекторы

Ядра 104-го элемента получаются только в том случае, если после полного слияния ядер неона и плутония новое ядро выбрасывает одни нейтроны; а чтобы получить изотоп с массовым числом 260, образовавшееся ядро должно выбросить четыре нейтрона – не больше и не меньше.

Почему стремились получить именно этот изотоп?

В его ядре – четное число протонов и четное число нейтронов. Поэтому вероятность спонтанного деления таких ядер очень велика. Подавляющее большинство изотопов, которые могут образоваться в этих условиях, напротив, подвержено альфа-распаду. Значит, именно продукты спонтанного деления будут самыми заметными «вещественными доказательствами» образования и присутствия в этом хаосе частиц немногочисленных атомов 104-го элемента.

Понадобился детектор, который фиксировал бы осколки спонтанного деления и никак не реагировал на прочие частицы. Такой детектор был найден. Материалами для него стали очень известные, обыкновенные вещества, в первую очередь стекло и слюда. На их поверхности не оставляли следа легкие частицы – мала масса, не оставляли я тяжелые с малой энергией. А «золотая середина» (и по массе и по энергии) – продукты спонтанного деления пробивали на поверхности этих материалов каналы.

Слегка растравив каналы кислотой, их можно было наблюдать под микроскопом.

В ходе многочисленных экспериментов была определена оптимальная энергия бомбардирующих частиц – та, при которой возможно образование наибольшего числа атомов 104-элемента. Оказалось, что наиболее эффективен обстрел плутониевых мишеней ионами неона-22 с энергией около 115 МэВ. Но и в этих условиях за 6 часов облучения регистрировался всего один акт спонтанного деления. В заключительном эксперименте, проведенном летом 1964 г., было зарегистрировано около 150 ядер нового элемента. Эксперимент длился больше 1000 часов.

После того как была проведена физическая идентификация нового элемента, центр тяжести исследований переместился в группу химиков.

В повторных экспериментах 1969 г. был уточнен период полураспада 260104, оказавшийся равным 0,1±0,05 секунды, и обнаружено спонтанное деление другого, более легкого изотопа 259104, который образуется одновременно с 260104, но за счет реакции с испарением пяти нейтронов.

Всего сейчас получено 9 изотопов элемента №104.

На подступах к химии

Почему ученые из Дубны стремились получить именно 104-й элемент? В то время, когда начиналась эта работа, элемент №103 еще не был синтезирован, но от 104-го ждали резкого отличия от соседних элементов по химическим свойствам. Однако уместен ли здесь разговор о химических свойствах? По мере увеличения массового числа время жизни тяжелых искусственных элементов катастрофически убывает. Химическую идентификацию двух предыдущих элементов сразу провести не удалось прежде всего из-за коротких периодов полураспада. К тому же и количество полученных ядер оказалось очень незначительным – на учете был каждый атом.

Со 104-м дело обстояло еще сложнее. Даже самые оптимистические прогнозы американских ученых предсказывали ему совсем недолгую жизнь – период полураспада порядка сотых долей секунды. Однако по данным первых опытов он оказался намного большим – 0,3±0,1 секунды. Но и это время слишком мало для того, чтобы существующими химическими методами доказать общность свойств нового элемента и какого-либо из «старых». А сделать это было необходимо потому, что выяснение места элемента №104 в таблице Менделеева не только окончательно подтверждало открытие физиков, но углубляло и конкретизировало современные взгляды на развитие периодической системы.

Согласно актиноидной теории Сиборга, элемент №103 – последний актиноид. Значит, место 104-го вновь в основной части менделеевской таблицы, под гафнием. Менделеев, вероятно, назвал бы его экагафнием. Доказать идентичность химических свойств 104-го элемента и гафния значило ответить на один из ключевых вопросов современной теоретической химии.

Поэтому еще в 1960 г., когда физики Объединенного института ядерных исследований только готовились к синтезу 104-го, руководитель работы Георгий Николаевич Флеров поручил молодому чехословацкому химику, недавнему выпускнику Московского университета Иво Зваре разработку ультраэкспрессного метода химической идентификации будущего элемента.

Идею химической идентификации 104-го элемента поддержал профессор Московского университета Андрей Николаевич Несмеянов. На одном из симпозиумов Лаборатории ядерных реакций (еще задолго до синтеза 104-го) он высказал мысль, что, несмотря на колоссальные трудности, которые поставит перед химиками краткость жизни нового элемента, возможно, удастся доказать его принадлежность к IV группе и создать новый метод разделения элементов III и IV групп периодической системы.

Эксперименты химиков: часть первая

Разработка ультраэкспрессного метода разделения элементов III и IV групп (побочных подгрупп) таблицы Менделеева была первой стадией работы радиохимиков. Прежде всего нужно было решить проблему скорости: предстояло сначала получить, а затем разделить однотипные соединения этих элементов. И все – за доли секунды.

За основу была взята разница в свойствах высших хлоридов элементов III и IV групп. При температуре около 250°C хлориды гафния и его аналогов переходят в газообразное состояние, а хлориды элементов III группы, в том числе лантаноидов, остаются твердыми. Значит, в этих условиях разделение их технически возможно, нужно лишь найти хорошую конструкцию прибора. После отделения примесей четыреххлористый гафний остается в газообразном состоянии, поэтому его можно быстро отвести к месту анализа. Вот, пожалуй, и весь запас сведений, которыми располагали радиохимики перед началом работы.

Ни в одной книге, ни в одной научной статье не было описания метода, который позволял бы провести химическую идентификацию какого-либо элемента за доли секунды.

Примерно через три года после начала работы были созданы и метод и прибор для ультраэкспрессного разделения хлоридов. Первый назвали методом «газовой химии», второй – газовым пробником. («Пробник» – слово из профессионального жаргона физиков-атомников; так называют они все устройства, которые позволяют проводить эксперименты в камере циклотрона.)

Хотя создание метода имело и самостоятельное научное значение, И. Звара и его товарищи рассматривали опыты, выполненные в этой части работы, как модели будущих опытов со 104-м. (Правда, конечная цель почти не фигурировала в научных статьях, написанных ими в то время; о ней если и упоминалось, то лишь в самом конце, одной-двумя фразами. Ученых нетрудно понять: еще не было доказательств того, что 104-й элемент – аналог гафния. Была только гипотеза, которую хотелось подтвердить.)

...Итоги были подведены статьей, направленной авторами нового метода в журнал «Радиохимия». Статья называлась «Применение газообразных галогенидов для быстрого разделения продуктов ядерных реакций». Вот ее аннотация:

«Изучалось поведение атомов отдачи, заторможенных в газовой среде, при транспорте газовым потоком в присутствии паров ZrCl4 и NbCl5 («носителей»). Атомы V, Sn, Nb и Hf эффективно транспортируются, в то время как атомы Na, Sc и лантаноидных элементов осаждаются на стенках газового тракта. С использованием полученных данных на установке, работающей с продуктами ядерных реакций, вызываемых ускоренными тяжелыми ионами, осуществлено непрерывное количественное выделение изотопов Hf из продуктов реакции. Коэффициент очистки от Na, Sc и La достигал значения ≥ 100. Время от момента образования атома Hf, затрачиваемое на очистку и транспорт к детектору излучения, составляет по прямым измерениям ≤ 0,4 секунды».

Поясним термины, фигурирующие в аннотации, и суть сделанного химиками.

«Атомы отдачи». Это атомы образовавшегося изотопа, вылетающие из мишени при обстреле ее пучком нейтронов или многозарядных ионов. В модельных опытах применялись мишени из окислов разных элементов в зависимости от того, какие атомы отдачи нужно было получить. Мишени наносились на алюминиевую подложку. Короткоживущие изотопы гафния 170Hf и 171Hf получались при облучении ионами неона естественной смеси изотопов самария.

В процессе облучения наряду с 170Hf и 171Hf образовывались другие изотопы, в том числе изотопы лантаноидов. Их тоже превращали в хлориды и почти полностью отделяли от изотопов гафния – «коэффициент очистки достигал значения ≥ 100». (Это значит, что количество примесей уменьшалось более чем в 100 раз.) При работе с плутониевой мишенью, когда вместо гафния и лантаноидов атомами отдачи будут атомы 104-го элемента и актиноидов, должно происходить то же самое!

«Газовый поток». Соединения изотопов, живущих считанные секунды, а то и доли секунды, можно исследовать только в газовой фазе. Любимая химиками работа с растворами тут исключена: не успеешь оглянуться (не то что перемешать раствор) – объект исследования исчез. А газовому потоку можно придать непрерывное движение с большой скоростью. Скорости реакций, идущих в нем, также могут быть очень велики.

Функции газового потока двояки: он и участник реакции, и переносчик образующихся соединений к детекторам – регистраторам распада необычных атомов. Поэтому в состав газового потока входит несколько компонентов различного назначения. Количественно преобладает инертный компонент – азот, атомы которого принимают избыток энергии атомов отдачи.

Другой компонент газового потока – хлорирующий агент. В большинстве модельных опытов им были пары ZrCl4 и NbCl5, которые одновременно выполняли функции носителя. Носитель должен не только связать атомы отдачи в химические соединения, но и донести эти считанные молекулы до детектора. В условиях опыта (температура 250°C, давление 0,2 мм ртутного столба) эти соли находятся в газообразном состоянии.

Носители транспортируют далеко не все атомы. Пары ZrCl4 и NbCl5 переносили к детекторам хлориды гафния, ниобия, ванадия и олова. А хлориды других элементов, в том числе трехвалентных лантаноидов, осаждались на стенках газового тракта и в специальной ловушке.

«Газовый тракт» – это изолированное пространство, в котором, собственно, происходят все химические преобразования атомов отдачи и их соединений. Начинается тракт сразу за мишенью, кончается – у детекторов.

Время от момента образования атома гафния до его попадания в детектор излучения – не больше четырех десятых секунды – в общем устраивало химиков: уже знали, что период полураспада изотопа 260104 – величина порядка десятой доли секунды. Химики должны были успеть!

Эксперименты химиков: часть вторая

К началу 1965 г. химики создали метод, при помощи которого можно было доказать идентичность химических свойств гафния и 104-го элемента. Физики, со своей стороны, научились получать атомы этого элемента десятками (а этого количества вполне достаточно для исследования) и регистрировать каждый из них. Настало время решающих опытов по химической идентификации 104-го.

Если он аналог гафния, то его тетрахлорид должен быть примерно таким же устойчивым и летучим соединением, как HfС14. Ядра 104-го, связанные в молекулы газообразного тетрахлорида, должны пройти через весь тракт газового пробника, и через десятые доли секунды после образования каждого ядра детекторы спонтанного деления, расположенные в конце тракта, должны зафиксировать его осколки.

Если же 104-й не экагафний, детекторы не зарегистрируют ничего: образовавшиеся атомы не смогут до них добраться, химическая идентификация 104-го элемента методом носителей в газовой фазе окажется невозможной.

В газовом пробнике заменили самариевую мишень на плутониевую, в конце тракта установили детекторы спонтанного деления. Через несколько дней видоизмененный газовый пробник впервые въехал в циклотрон...

Атомы 104-го образуются не часто – опыты должны были идти долго и обязательно непрерывно: кто знает, в какой момент образуются эти атомы? В общей сложности химики провели четырнадцать экспериментов на циклотроне, в ходе которых было зарегистрировано четыре осколка спонтанного деления ядер 104-го. Это в двадцать раз меньше, чем ожидалось. В чем причина?

Проверили все расчеты – ошибки нет. Значит, нужно менять температурный режим. Температура в газовом пробнике была доведена до 350°C. Началась новая серия экспериментов. В ходе этой серии детекторы зарегистрировали восемь атомов 104-го элемента – экспериментаторы рассчитывали на шесть – десять.

После этого можно было делать выводы. Главные из них таковы. Химическим методом подтверждено открытие физиками Объединенного института ядерных исследований нового сверхтяжелого элемента №104. Его изотоп с массовым числом 260 подвержен спонтанному делению. 104-й элемент – химический аналог гафния. Это первый тяжелый искусственный элемент, не входящий в семейство актиноидов.

Вне циклотрона и пробника

26 марта 1966 г. был закончен последний химический опыт на циклотроне, а через три дня на кафедре радиохимии Московского университета состоялась защита кандидатской диссертации на тему «Использование газообразных соединений для экспрессного непрерывного разделения продуктов ядерных реакций».

Член-корреспондент Академии наук СССР В.И. Гольданский внес предложение: рекомендовать кандидатскую диссертацию Иво Звары к рассмотрению на ученом совете факультета на предмет присуждения ему ученой степени доктора химических наук. Это предложение было принято, и 17 июня Иво Зваре пришлось «защищаться» вторично. А шестнадцатью днями раньше он докладывал об этой работе на заседании ученого совета Объединенного института ядерных исследований. Здесь же обсуждался вопрос о том, как назвать элемент №104. Создатели элемента предложили назвать его курчатовием – в честь выдающегося советского физика Игоря Васильевича Курчатова. Ученый совет единогласно поддержал это предложение.

На этом хотелось бы поставить точку, как в романе со счастливым концом, но, оказалось, точку ставить рано.

Открытие 104-го элемента в Дубне было поставлено под сомнение американскими исследователями. Почему? Прежде всего потому, что период полураспада изотопа 260Ku по спонтанному делению (первоначально он был определен в 0,3 секунды, позже уточнен как величина, около 0,1 секунды) оказался несравненно больше, чем предсказывали американские теоретики.

И еще можно допустить, что существует генетическая связь между неверием американцев в курчатовий и уничтожающей, в общем-то, критикой учеными Дубны американских работ по нобелию и лоуренсию... Чем было подкреплено неверие, чем аргументирована критика американцев? В 1969...1970 гг. в Беркли начали изучать альфа-распад изотопов элемента №104. Появились сообщения о получении трех изотопов 104-го, в том числе относительно долгоживущего изотопа 259104 (его период полураспада 4,5 секунды). Была предпринята попытка получить и спонтанно делящийся изотоп 260104 при бомбардировке кюрия ионами кислорода (96 + 8 = 94 + 10 = 104). И вот что доложил доктор Гиорсо на конференции по трансурановым элементам в Хьюстоне (1969 г.)

«На прошлой неделе мы облучили мишень из кюрия ионами кислорода... в надежде найти спонтанно делящуюся активность, которая могла бы быть обусловлена распадом 260104, если бы он имел период полураспада более короткий, чем 0,1 секунды (100 мс). Мы зарегистрировали активность с периодом полураспада между 10 и 30 мс, но мы еще не идентифицировали ее. Конечно, она могла быть обусловлена 260104, хотя кажется, что такой период полураспада слишком длинный. Нам кажется более вероятным, что период полураспада 260104 находится в микросекундиой области».

И все. Научных сообщений об исследовании изотопа 260104 от группы Гиорсо не последовало. Нигде больше не упоминалось и о наблюдавшейся 30-миллисекундной активности. Тем не менее в устных выступлениях и в обзорных статьях и Сиборг, и Гиорсо не раз высказывали сомнения в правильности дубненских результатов. Их доводы не отличались конкретностью: «...я считаю, что по спонтанному делению вообще ничего определить нельзя» (Гиорсо); «...но поскольку элемент живет только десятые доли секунды, химия, естественно, не может быть убедительной» (Сиборг). Здесь уместно вспомнить, что совсем недавно, лет тридцать – сорок назад, апологетам классических методов химического анализа представлялись неубедительными результаты радиохимических исследований, проведенных на микроколичествах.

Время так же относительно, как и масса; экспресс-методы анализа короткоживущих изотопов и их соединений создаются в наши дни. И, если возникают сомнения в результатах, полученных этими методами, опровергать их надо аргументировано. Аргументы же типа «не верю» и «этого не может быть, потому что этого не может быть никогда» не убедительны, даже если их высказывают большие ученые, много, действительно много сделавшие для науки о трансурановых элементах.

Но, так или иначе, не имея убедительных доводов против дубненских работ по 104-му элементу, ученые из Беркли позволили себе назвать этот элемент по-своему – резерфордием.

Эксперименты химиков: часть третья

Целью новых дубненских экспериментов, о которых сообщил журнал «Радиохимия» (1972, №1), была повторная химическая идентификация элемента №104 как экагафния. На этот раз экспериментировали с изотопом 259Ku, время жизни которого намного больше, чем 260Ku.

Была создана новая методика, позволяющая отфильтровывать не только атомы более легких, чем курчатовий, трансурановых элементов, но и короткоживущий изотоп 260Ku.

В циклотроне облучали мишени из окиси плутония (95% 242Pu). Снарядами, как и в прошлых опытах, служили ускоренные ионы неона-22 с энергией от 110 до 125 МэВ: именно при таких энергиях образуется наибольшее число атомов курчатовия. А энергия 119 МэВ соответствует максимуму образования ядер изотопа 259Ku в реакции с вылетом пяти нейтронов.

Небольшую часть плутониевой мишени покрыли слоем окиси самария. Это сделали для того, чтобы в параллельной реакции образовывался и ближайший аналог курчатовия – гафний. В другой побочной реакции образовывался и один из радиоактивных изотопов скандия. Скандий – аналог лантаноидов и актиноидов; хлориды этих элементов примерно одинаково нелетучи. Следовательно, попутно образующиеся спонтанно делящиеся изотопы актиноидов (фермий-256, в частности) в хроматографической колонке оседали бы вместе со скандием.

Хроматографическая колонка в предыдущей фразе упомянута не случайно. Установка, на которой предстояло заново идентифицировать элемент №104, представляла собой именно такую колонку, но усложненную, специально созданную для этих опытов. Правильнее было бы назвать ее термохроматографической: строго определенный температурный режим был необходимым условием. Ядра, вылетавшие из мишени, тормозились в потоке азота, который и транспортировал их в колонку. Туда же, в самое ее начало, подавали хлорирующие агенты – TiCl4 и SOC12.

Сама колонка состояла из трех участков, трех зон. Эту ядерную трассу можно сравнить с дистанцией стипльчеза – скачок с препятствиями: образующимся атомам пройти эту трассу было очень нелегко. На маршрут направляли всевозможные элементы, хлориды которых обладают разными свойствами. Большинство «всадников» сходило с дистанции задолго до финиша, хотя длина трассы составляла всего 195 см...

Установка для химической идентификации элемента 104

Рис. 12. Установка для химической идентификации элемента №104: схема (вверху), график температурного режима в термохроматографической колонке (в середине) и распределение продуктов по длине колонки (внизу). Пунктиром выделена зона осаждения скандия и актиноидов, сплошной линией – зона сорбции гафния и курчатовия. Кружки на нижней диаграмме отражают соотношение зарегистрированных актов спонтанного деления. Следы спонтанного деления в скандиевой зоне – результат деления ядер актиноидов, в первую очередь фермия. В зоне гафния такие следы могли оставить только ядра курчатовия. Как видно из схемы, в оптимальных для синтеза элемента №104 условиях больше всего следов спонтанного деления наблюдается именно в последней части колонки

Первый участок колонки длиной 30 см предназначался для отделения нелетучих хлоридов. Именно здесь заканчивали свой путь образующиеся атомы скандия и актиноидов. Частые выступы на внутренней поверхности этого участка вызывали завихрения потока, что, конечно, способствовало скорейшему оседанию нелетучих хлоридов.

На втором участке (его длина 100 см) оставшимся молекулам предстояло продолжать жаркую борьбу – жаркую в прямом и переносном смысле: здесь поддерживалась температура 400±5°C. В этих условиях хлориды гафния и курчатовия газообразны, они должны пройти этот самый длинный участок трассы, в то время как нелетучие соединения, проскочившие барьеры первой зоны, здесь должны были обязательно выбыть из гонки.

На третьем, 65-сантиметровом участке температура резко снижалась – с 400 до 50°C. Хлориды гафния и курчатовия здесь переходили в адсорбированное состояние, замедлялись и улавливались детекторами спонтанного деления – слюдяными пластинками. Такие же пластинки, кстати, были для контроля установлены и по всей длине второго участка.

Предварительные опыты показали, что при импульсном введении в газовый поток атомы гафния проходили дистанцию в среднем за 0,4 секунды, а за 2 секунды сквозь колонку прошло 95% всех атомов гафния. Эти результаты говорили, что у короткоживущих атомов курчатовия-260 нет шансов благополучно закончить дистанцию, зато атомы относительно долгоживущего курчатовия-259 должны были успешно преодолеть ее и дойти до цели.

Когда были подсчитаны треки – следы спонтанного деления на слюдяных пластинках, оказалось, что большинство «дырок» пробито в детекторах, стоявших в последней части колонки, там, где сорбировался гафний. Эти следы могли оставить только распадающиеся атомы курчатовия: все другие спонтанно делящиеся ядра сходили с дистанции раньше.

В последней серии опытов бомбардирующим ионам неона придавали энергию больше 125 МэВ. Число треков, оставленных осколками спонтанно делящихся ядер, стало намного меньше. Это естественно: условия образования ядер курчатовия стали неоптимальны.

Новые эксперименты в Дубне еще раз подтвердили аналогию химических свойств курчатовия и гафния. Их результаты не оставляют сомнений в том, какая из лабораторий – Дубны или Беркли – завоевала «приз» элемента №104.


В 1994 Международная комиссия по названиям новых элементов для элемента №104 предложила название «дубний», которое использовалось в 1995...97. В 1997 съезд Международной организации химиков (ИЮПАК) окончательно присвоил элементу №104 название «резерфордий» (Большая энциклопедия Кирилла и Мефодия, 2002).

 

Дубний

Оглавление


Дата публикации:

19 марта 2004 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2016
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика