Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Книги / Популярная библиотека химических элементов
Начало сайта / Книги / Популярная библиотека химических элементов

Научные статьи

Физика звёзд

Физика микромира

Научно-популярные статьи

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Безумные идеи

Как мы видим то, что видим

Культура. Техника. Образование

Популярная информатика

Ум хорошо...

Химия вокруг нас

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Препринт

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Популярная библиотека химических элементов

Хром

24
Cr
1 13 8 2
ХРОМ
51,996
3d54s1

Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хрома имеет яркую окраску, причем самых разных цветов. За эту особенность элемент и был назван хромом, что в переводе с греческого означает «краска».

 

Как его нашли

Минерал, содержащий хром, был открыт близ Екатеринбурга в 1766 г. И.Г. Леманном и назван «сибирским красным свинцом». Сейчас этот минерал называется крокоитом. Известен и его состав – РbCrО4. А в свое время «сибирский красный свинец» вызвал немало разногласий среди ученых. Тридцать лет спорили о его составе, пока, наконец, в 1797 г. французский химик Луи Никола Воклен не выделил из него металл, который (тоже, кстати, после некоторых споров) назвали хромом.

Воклен обработал крокоит поташем К2CO3: хромат свинца превратился в хромат калия. Затем с помощью соляной кислоты хромат калия был превращен в окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Нагрев зеленый порошок окиси хрома в графитовом тигле с углем, Воклен получил новый тугоплавкий металл.

Парижская академия наук по всей форме засвидетельствовала открытие. Но, скорее всего, Воклен выделил не элементарный хром, а его карбиды. Об этом свидетельствует иглообразная форма полученных Вокленом светлосерых кристаллов.

Название «хром» предложили друзья Воклена, но оно ему не понравилось – металл не отличался особым цветом. Однако друзьям удалось уговорить химика, ссылаясь на то, что из ярко окрашенных соединений хрома можно получать хорошие краски. (Кстати, именно в работах Воклена впервые объяснена изумрудная окраска некоторых природных силикатов бериллия и алюминия; их, как выяснил Воклен, окрашивали примеси соединений хрома.) Так и утвердилось за новым элементом это название.

Между прочим, слог «хром», именно в смысле «окрашенный», входит во многие научные, технические и даже музыкальные термины. Широко известны фотопленки «изопанхром», «панхром» и «ортохром». Слово «хромосома» в переводе с греческого означает «тело, которое окрашивается». Есть «хроматическая» гамма (в музыке) и есть гармоника «хромка».

Где он находится

В земной коре хрома довольно много – 0,02%. Основной минерал, из которого промышленность получает хром, – это хромовая шпинель переменного состава с общей формулой (Mg, Fe) О · (Сr, Al, Fе)2O3. Хромовая руда носит название хромитов или хромистого железняка (потому, что почти всегда содержит и железо). Залежи хромовых руд есть во многих местах. Наша страна обладает огромными запасами хромитов. Одно из самых больших месторождений находится в Казахстане, в районе Актюбинска; оно открыто в 1936 г. Значительные запасы хромовых руд есть и на Урале.

Хромиты идут большей частью на выплавку феррохрома. Это – один из самых важных ферросплавов*, абсолютно необходимый для массового производства легированных сталей.

* Ферросплавы – сплавы железа с другими элементами, применяемыми главным обрядом для легирования и раскисления стали. Феррохром содержит не менее 60% Cr.

Царская Россия почти не производила ферросплавов. На нескольких доменных печах южных заводов выплавляли низкопроцентные (по легирующему металлу) ферросилиций и ферромарганец. Да еще на реке Сатке, что течет на Южном Урале, в 1910 г. был построен крошечный заводик, выплавлявший мизерные количества ферромарганца и феррохрома.

Молодой Советской стране в первые годы развития приходилось ввозить ферросплавы из-за рубежа. Такая зависимость от капиталистических стран была недопустимой. Уже в 1927...1928 гг. началось сооружение советских ферросплавных заводов. В конце 1930 г. была построена первая крупная ферросплавная печь в Челябинске, а в 1931 г. вступил в строй Челябинский завод – первенец ферросплавной промышленности СССР. В 1933 г. были пущены еще два завода – в Запорожье и Зестафони. Это позволило прекратить ввоз ферросплавов. Всего за несколько лет в Советском Союзе было организовано производство множества видов специальных сталей – шарикоподшипниковой, жароупорной, нержавеющей, автотракторной, быстрорежущей... Во все эти стали входит хром.

На XVII съезде партии нарком тяжелой промышленности Серго Орджоникидзе говорил: «...если бы у нас не было качественных сталей, у нас не было бы автотракторной промышленности. Стоимость расходуемых нами сейчас качественных сталей определяется свыше 400 млн руб. Если бы надо было ввозить, это – 400 млн руб. ежегодно, вы бы, черт побери, в кабалу попали к капиталистам...»

Завод на базе Актюбинского месторождения построен позже, в годы Великой Отечественной войны. Первую плавку феррохрома он дал 20 января 1943 г. В сооружении завода принимали участие трудящиеся города Актюбинска. Стройка была объявлена народной. Феррохром нового завода шел на изготовление металла для танков и пушек, для нужд фронта.

Прошли годы. Сейчас Актюбинский ферросплавный завод – крупнейшее предприятие, выпускающее феррохром всех марок. На заводе выросли высококвалифицированные национальные кадры металлургов. Из года в год завод и хромитовые рудники наращивают мощность, обеспечивая нашу черную металлургию высококачественным феррохромом.

В нашей стране есть уникальное месторождение природнолегированных железных руд, богатых хромом и никелем. Оно находится в оренбургских степях. На базе этого месторождения построен и работает Орско-Халиловский металлургический комбинат. В доменных печах комбината выплавляют природнолегированный чугун, обладающий высокой жароупорностью. Частично его используют в виде литья, но большую часть отправляют на передел в никелевую сталь; хром при выплавке стали из чугуна выгорает.

Большими запасами хромитов располагают Куба, Югославия, многие страны Азии и Африки.

Как его получают

Хромит применяется преимущественно в трех отраслях промышленности: металлургии, химии и производстве огнеупоров, причем металлургия потребляет примерно две трети всего хромита.

Сталь, легированная хромом, обладает повышенной прочностью, стойкостью против коррозии в агрессивных и окислительных средах.

Получение чистого хрома – дорогой и трудоемкий процесс. Поэтому для легирования стали применяют главным образом феррохром, который получают в дуговых электропечах непосредственно из хромита. Восстановителем служит кокс. Содержание окиси хрома в хромите должно быть не ниже 48%, а отношениеCr: Fe не менее 3: 1.

Полученный в электропечи феррохром обычно содержит до 80% хрома и 4...7% углерода (остальное – железо).

Но для легирования многих качественных сталей нужен феррохром, содержащий мало углерода (о причинах этого – ниже, в главе «Хром в сплавах»). Поэтому часть высокоуглеродистого феррохрома подвергают специальной обработке, чтобы снизить содержание углерода в нем до десятых и сотых долей процента.

Из хромита получают и элементарный, металлический хром. Производство технически чистого хрома (97...99%) основано на методе алюминотермии, открытом еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Сущность метода – в восстановлении окислов алюминием, реакция сопровождается значительным выделением тепла.

Но предварительно надо получить чистую окись хрома Сr2О3. Для этого тонко измельченный хромит смешивают с содой и добавляют к этой смеси известняк или окись железа. Вся масса обжигается, причем образуется хромат натрия:

2Сr2О3 + 4Na2CO3 + 3О2 → 4Na2CrO4 + 4CO2.

Затем хромат натрия выщелачивают из обожженной массы водой; щелок фильтруют, упаривают и обрабатывают кислотой. В результате получается бихромат натрия Na2Cr2O7. Восстанавливая его серой или углеродом при нагревании, получают зеленую окись хрома.

Металлический хром можно получить, если чистую окись хрома смешать с порошком алюминия, нагреть эту смесь в тигле до 500...600°C и поджечь с помощью перекиси бария, Алюминий отнимает у окиси хрома кислород. Эта реакция Сr2О3 + 2Аl → Аl2O3 + 2Сr – основа промышленного (алюминотермического) способа получения хрома, хотя, конечно, заводская технология значительно сложнее. Хром, полученный алюминотермически, содержит алюминия и железа десятые доли процента, а кремния, углерода и серы – сотые доли процента.

Используют также силикотермический способ получения технически чистого хрома. В этом случае хром из окиси восстанавливается кремнием по реакции 2Сr2О3 + 3Si → 3SiO2 + 4Сr.

Эта реакция происходит в дуговых печах. Для связывания кремнезема в шихту добавляют известняк. Чистота силикотермического хрома примерно такая же, как и алюминотермического, хотя, разумеется, содержание в нем кремния несколько выше, а алюминия несколько ниже. Для получения хрома пытались применить и другие восстановители – углерод, водород, магний. Однако эти способы не получили широкого распространения.

Хром высокой степени чистоты (примерно 99,8%) получают электролитически.

Технически чистый и электролитический хром идет главным образом на производство сложных хромовых сплавов.

Константы и свойства хрома

Атомная масса хрома 51,996. В менделеевской таблице он занимает место в шестой группе. Его ближайшие соседи и аналоги – молибден и вольфрам. Характерно, что соседи хрома, так же как и он сам, широко применяются для легирования сталей.

Температура плавления хрома зависит от его чистоты. Многие исследователи пытались ее определить и получили значения от 1513 до 1920°C. Такой большой «разброс» объясняется прежде всего количеством и составом содержащихся в хроме примесей. Сейчас считают, что хром плавится при температуре около 1875°C. Температура кипения 2199°C. Плотность хрома меньше, чем железа; она равна 7,19.

По химическим свойствам хром близок к молибдену и вольфраму. Высший окисел его CrО3 – кислотный, это – ангидрид хромовой кислоты Н2CrО4. Минерал крокоит, с которого мы начинали знакомство с элементом №24, – соль этой кислоты. Кроме хромовой, известна двухромовая кислота H2Cr2O7, в химии широко применяются ее соли – бихроматы. Наиболее распространенный окисел хрома Cr2О3 – амфотерен. А вообще в разных условиях хром может проявлять валентности от 2 до 6. Широко используются только соединения трех- и шестивалентного хрома.

Хром обладает всеми свойствами металла – хорошо проводит тепло и электрический ток, имеет характерный металлический блеск. Главная особенность хрома – его устойчивость к действию кислот и кислорода.

Для тех, кто постоянно имеет дело с хромом, стала притчей во языцех еще одна его особенность: при температуре около 37°C некоторые физические свойства этого металла резко, скачкообразно меняются. При этой температуре – явно выраженный максимум внутреннего трения и минимум модуля упругости. Почти также резко изменяются электросопротивление, коэффициент линейного расширения, термоэлектродвижущая сила.

Объяснить эту аномалию ученые пока не могут.

Известны четыре природных изотопа хрома. Их массовые числа 50, 52, 53 и 54. Доля самого распространенного изотопа 52Cr – около 84%

Хром в сплавах

Вероятно, было бы противоестественным, если бы рассказ о применении хрома и его соединений начался не со стали, а с чего-либо иного. Хром – один из самых важных легирующих элементов, применяемых в черной металлургии. Добавка хрома к обычным сталям (до 5% Сr) улучшает их физические свойства и делает металл более восприимчивым к термической обработке. Хромом легируют пружинные, рессорные, инструментальные, штамповые и шарикоподшипниковые стали. В них (кроме шарикоподшипниковых сталей) хром присутствует вместе с марганцем, молибденом, никелем, ванадием. А шарикоподшипниковые стали содержат лишь хром (около 1,5%) и углерод (около 1%). Последний образует с хромом карбиды исключительной твердости: Cr3С. Cr7С3 и Cr23С6. Они придают шарикоподшипниковой стали высокую износостойкость.

Если содержание хрома в стали повысить до 10% и более, сталь становится более стойкой к окислению и коррозии, но здесь вступает в силу фактор, который можно назвать углеродным ограничением. Способность углерода связывать большие количества хрома приводит к обеднению стали этим элементом. Поэтому металлурги оказываются перед дилеммой: хочешь получить коррозионную стойкость – уменьшай содержание углерода и теряй на износостойкости и твердости.

Нержавеющая сталь самой распространенной марки содержит 18% хрома и 8% никеля. Содержание углерода в ней очень невелико – до 0,1%. Нержавеющие стали хорошо противостоят коррозии и окислению, сохраняют прочность при высоких температурах. Из листов такой стали сделана скульптурная группа В.И. Мухиной «Рабочий и колхозница», которая установлена в Москве у Северного входа на Выставку достижений народного хозяйства. Нержавеющие стали широко используются в химической и нефтяной промышленности.

Высокохромистые стали (содержащие 25...30% Cr) обладают особой стойкостью к окислению при высокой температуре. Их применяют для изготовления деталей нагревательных печей.

Теперь несколько слов о сплавах на основе хрома. Это сплавы, содержащие более 50% хрома. Они обладают весьма высокой жаропрочностью. Однако у них есть очень большой недостаток, сводящий на нет все преимущества: эти сплавы очень чувствительны к поверхностным дефектам: достаточно появиться царапине, микротрещине, и изделие быстро разрушится под нагрузкой. У большинства сплавов подобные недостатки устраняются термомеханической обработкой, но сплавы на основе хрома такой обработке не поддаются. Кроме того, они чересчур хрупки при комнатной температуре, что также ограничивает возможности их применения.

Более ценны сплавы хрома с никелем (в них часто вводятся как легирующие добавки и другие элементы). Самые распространенные сплавы этой группы – нихромы содержат до 20% хрома (остальное никель) и применяются для изготовления нагревательных элементов. У нихромов – большое для металлов электросопротивление, при пропускании тока они сильно нагреваются.

Добавка к хромоникелевым сплавам молибдена и кобальта позволяет получить материалы, обладающие высокой жаропрочностью, способностью выносить большие нагрузки при 650...900°C. Из этих сплавов делают, например, лопатки газовых турбин.

Жаропрочностью, обладают также хромокобальтовые сплавы, содержащие 25...30% хрома. Промышленность использует хром и как материал для антикоррозионных и декоративных покрытий.

...и в других соединениях

Главная хромовая руда – хромит используется и в производстве огнеупоров. Магнезитохромитовые кирпичи химически пассивны и термостойки, они выдерживают многократные резкие изменения температур. Поэтому их используют в конструкциях сводов мартеновских печей. Стойкость магнезитохромитовых сводов в 2...3 раза больше, чем динасовых*.

* Динас – кислый огнеупорный кирпич, содержащий не меньше 93% кремнезема. Огнеупорность динаса 1680...1730°C. В вышедшем в 1952 г. 14-м томе Большой Советской Энциклопедии (2-е издание) динас назван незаменимым материалом для сводов мартеновских печей. Это утверждение следует считать устаревшим, хотя динас и сейчас широко применяется в качество огнеупора.

Химики получают из хромита в основном бихроматы калия и натрия К2Cr2O7 и Na2Cr2O7.

Бпхроматы и хромовые квасцы KCr(SO4); применяются для дубления кожи. Отсюда и идет название «хромовые» сапоги. Кожа. дубленная хромовыми соединениями, обладает красивым блеском, прочна и удобна в использовании.

Из хромата свинца РbCrО4. изготовляют различные красители. Раствором бихромата натрия очищают и травят поверхность стальной проволоки перед цинкованием, а также осветляют латунь. Хромит и другие соединения хрома широко применяются в качестве красителей керамической глазури и стекла.

Наконец, из бихромата натрия получают хромовую кислоту, которая используется в качестве электролита при хромировании металлических деталей.

Что же дальше?

Хром и в будущем сохранит свое значение как легирующая добавка к стали и как материал для металлопокрытий; не утратят ценности и соединения хрома, используемые в химической и огнеупорной промышленности.

Гораздо сложнее обстоит дело со сплавами на основе хрома. Большая хрупкость и исключительная сложность механической обработки пока не позволяют широко применять эти сплавы, хотя по жаропрочности и износостойкости они могут потягаться с любыми материалами. В последние годы наметилось новое направление в производстве хромсодержащих сплавов – легирование их азотом. Этот обычно вредный в металлургии газ образует с хромом прочные соединения – нитриды. Азотирование хромистых сталей повышает их износостойкость, позволяет уменьшить содержание дефицитного никеля в «нержавейках». Быть может, этот метод позволит преодолеть и «необрабатываемость» сплавов на основе хрома? Или здесь придут на помощь другие, пока не известные методы? Так или иначе, надо думать, что в будущем эти сплавы займут достойное место среди нужных технике материалов.

Три или шесть?

Поскольку хром хорошо сопротивляется окислению на воздухе и действию кислот, его часто наносят на поверхность других материалов, чтобы защитить их от коррозии. Метод нанесения давно известен – это электролитическое осаждение. Однако на первых порах при разработке процесса электролитического хромирования возникли неожиданные трудности.

Известно, что обычные гальванические покрытия наносят с помощью электролитов, в которых ион наносимого элемента имеет положительный заряд. С хромом так не получалось: покрытия оказывались пористыми, легко отслаивались.

Почти три четверти века работали ученые над проблемой хромирования и только в 20-х годах нашего века нашли, что электролит хромированной ванны должен содержать не трехвалентный хром, а хромовую кислоту, т.е. шестивалентный хром. При промышленном хромировании в ванну добавляют соли серной и плавиковой кислот; свободные кислотные радикалы катализируют процесс гальванического осаждения хрома.

Ученые не пришли пока к единому мнению о механизме осаждения шестивалентного хрома на катоде гальванической ванны. Есть предположение, что шестивалентный хром переходит сначала в трехвалентный, а затем уже восстанавливается до металла. Однако большинство специалистов сходится на том, что хром у катода восстанавливается сразу из шестивалентного состояния. Некоторые ученые считают, что в этом процессе участвует атомарный водород, некоторые – что шестивалентный хром просто получает шесть электронов.

Декоративные и твердые

Хромовые покрытия бывают двух видов: декоративные и твердые. Чаще приходится сталкиваться с декоративными: на часах, дверных ручках и других предметах. Здесь слой хрома наносится на подслой другого металла, чаще всего никеля или меди. Сталь защищена от коррозии этим подслоем, а тонкий (0,0002...0,0005 мм.) слой хрома придает изделию парадный вид.

Твердые покрытия построены иначе. Хром наносят на сталь значительно более толстым слоем (до 0,1 мм), но без подслоев. Такие покрытия повышают твердость и износостойкость стали, а также уменьшают коэффициент трения.

Хромирование без электролита

Есть и другой способ нанесения хромовых покрытий – диффузионный. Этот процесс идет не в гальванических ваннах, а в печах.

Стальную деталь помещают в порошок хрома и нагревают в восстановительной атмосфере. За 4 часа при температуре 1300°C на поверхности детали образуется обогащенный хромом слой толщиной 0,08 мм. Твердость и коррозийная стойкость этого слоя значительно больше, чем твердость стали в массе детали. Но этот, казалось бы, простой метод приходилось неоднократно совершенствовать. На поверхности стали образовывались карбиды хрома, которые препятствовали диффузии хрома в сталь. Кроме того, порошок хрома при температуре порядка тысячи градусов спекается. Чтобы этого не случилось, к нему примешивают порошок нейтрального огнеупора. Попытки заменить порошок хрома смесью окиси хрома с углем не дали положительных результатов.

Более жизненным оказалось предложение применять в качестве носителя хрома его летучие галоидные соли, например CrCl2. Горячий газ омывает хромируемое изделие, при этом идет реакция:

СrСl2 + Fe ↔ FeСl2 + Сr.

Использование летучих галоидных солей позволило снизить температуру хромирования.

Хлорид (или иодид) хрома получают обычно в самой установке для хромирования, пропуская пары соответствующей галоидоводородной кислоты через порошкообразный хром или феррохром. Образовавшийся газообразный хлорид омывает хромируемое изделие.

Процесс длится долго – несколько часов. Нанесенный таким образом слой гораздо крепче соединен с основным материалом, чем нанесенный гальванически.

Все началось с мытья посуды...

В любой аналитической лаборатории стоит большая бутыль с темной жидкостью. Это «хромовая смесь» – смесь насыщенного раствора бихромата калия с концентрированной серной кислотой. Зачем она нужна?

На пальцах человека всегда есть жировые загрязнения, которые легко переходят на стекло. Именно эти отложения призвана смывать хромовая смесь. Она окисляет жир и удаляет его остатки. Но с этим веществом обращаться надо осторожно. Несколько капель хромовой смеси, попавшие на костюм, способны превратить его в подобие решета: в смеси два вещества, и оба «разбойники» – сильная кислота и сильный окислитель.

Хром и древесина

Даже в наш век стекла, алюминия, бетона и пластиков нельзя не признать древесину отличным строительным материалом. Главное ее достоинство в простоте обработки, а главные недостатки – в пожароопасности, подверженности разрушению грибками, бактериями, насекомыми. Древесину можно сделать более стойкой, пропитав ее специальными растворами, в состав которых обязательно входят хроматы и бихроматы плюс хлорид цинка, сульфат меди, арсенат натрия и некоторые другие вещества. Пропитка во много раз увеличивает стойкость древесины к действию грибков, насекомых, пламени.

Глядя на рисунок

Иллюстрации в печатных изданиях делаются с клише – металлических пластинок, на которых этот рисунок (вернее, его зеркальное отражение) выгравирован химическим способом или вручную. До изобретения фотографии клише гравировали только вручную; это трудоемкая работа, требующая большого мастерства.

Но еще в 1839 г. произошло открытие, казавшееся не имевшим никакого отношения к полиграфии. Было установлено, что бумага, пропитанная бихроматом натрия или калия, после освещения ярким светом становится вдруг коричневой. Затем выяснилось, что бихроматные покрытия на бумаге после засвечивания не растворяются в воде, а, будучи смоченными, приобретают синеватый оттенок. Этим свойством воспользовались полиграфисты. Нужный рисунок фотографировали на пластинку с коллоидным покрытием, содержащим бихромат. Засвеченные места при промывке не растворялись, а незасвеченные растворялись, и на пластине оставался рисунок, с которого можно было печатать.

Сейчас в полиграфии используют другие светочувствительные материалы, применение бихроматных гелей сокращается. Но не стоит забывать, что «первопроходцам» фотомеханического метода в полиграфии помог хром.

 

Марганец

Оглавление


Дата публикации:

22 июня 2002 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2016
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика