Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Раритетные издания / Смотри в корень!
Начало сайта / Раритетные издания / Смотри в корень!

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Биологически активные

Грюндеры и грюндерство

Крушение парадоксов

Парадокс XX века

Ум хорошо...

Ученые – популяризаторы науки

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Задача 83. Разглядывая сквозь щель

Пётр Маковецкий. Смотри в корень! Сборник любопытных задач и вопросов

А.

В этой задаче вам предстоит объяснить результаты эксперимента, который вы сами же должны проделать. На рис. 115 показана решетка из вертикальных и горизонтальных линий. Возьмите кусок картона, проведите по нему лезвием бритвы и посмотрите на рисунок одним глазом через образовавшуюся в картоне тонкую щель. Щель держите рядом с глазом и направьте ее горизонтально. Расстояние от глаза до рисунка должно быть 30...40 см. Вы обнаружите, что в решетке сохранились только вертикальные линии, а горизонтальные исчезли. Куда они девались?

Рисунок решетки

Рис. 115. Решетка

Б.

У вас не получился эксперимент? Вы видите всю решетку? Или, наоборот, ничего не видите? В первом случае у вас слишком широкая щель, во втором – слишком узкая. Надо немного повозиться: попробуйте слегка сгибать картон, чтобы ширина щели менялась (оптимум – порядка 1...10 мкм). Опыт лучше удается, если решетка сильно освещена, а обращенная к глазу сторона картона не освещена совсем.

Ну, вот, наконец, у вас получилось. Не правда ли, несколько странное зрелище? А теперь поверните щель на 90° и вы увидите, что исчезли вертикальные линии решетки и появились горизонтальные. Для того чтобы разобраться в увиденном, советуем посмотреть еще на кольцо (рис. 116, a).

Дифракция на кольцевой щели

Рис. 116. Дифракция на кольцевой щели

При вертикальной щели вы увидите размытыми левую и правую стороны кольца, при горизонтальной – верхнюю и нижнюю (рис. 116, б и в). Повторите опыт при разных наклонах щели. Оказывается, что всегда размываются те участки кольца, которые идут вдоль щели, и сохраняются идущие поперек.

Если, однако, у вас все наоборот (сохранились линии, параллельные щели, и исчезли перпендикулярные), то это значит, что вы не соблюли условий (у вас слишком широкая щель, и вы слишком приблизились к решетке) и попали в задачу «Заглядывая в щель».

В.

Объяснение этого явления следует искать в дифракции света. Известно, что свет, проходя рядом с препятствием, искривляет свой путь, огибая препятствие и заходя туда, где по законам прямолинейного распространения должна быть тень. Параллельный пучок лучей, падающий на экран с маленьким отверстием (рис. 117, а), после прохождения сквозь отверстие оказывается расходящимся. Чем меньше отверстие, тем сильнее расхождение лучей.

Ход лучей при дифракции света на щели

Рис. 117. Ход лучей при дифракции света на щели

Для очень малого отверстия (порядка длины волны света, т.е. микрометр и менее) картина лучей, оказывается такой, как будто отверстие является точечным излучателем.

При прохождении сквозь большое отверстие основная часть лучей проходит практически без искривления пути. И только те лучи, которые проходят сквозь отверстие рядом с его краями, искривляют свой путь (рис. 117, б). Прорезанная бритвой щель является отверстием, размеры которого очень малы в одном измерении и очень велики в другом. Поэтому световой пучок, проходящий сквозь щель, претерпевает сильную дифракцию в плоскости, перпендикулярной к щели, почти не подвергаясь дифракции во второй плоскости. Представление о поведении лучей после щели дает рис. 117, в.

Пусть щель параллельна горизонтальным линиям решетки. Тогда лучи, проходящие от решетки сквозь щель к глазу, рассыпаются веером в вертикальной плоскости, отчего каждая точка размывается по вертикали, а горизонтальная черная линия становится очень широкой (рис. 118, а). Поскольку размываются не только горизонтальные черные линии, но и белые просветы между ними, то горизонтальные линии оказываются широкими бледно-серыми полосами, едва заметными для глаза.

Дифракционная картина на решетке

Рис. 118. Дифракционная картина на решетке

С вертикальной черной линией дело обстоит несколько иначе. Все ее точки, конечно, также размываются в вертикальном направлении и не размываются в горизонтальном. Но при этом их размытые изображения накладываются друг на друга вдоль самой вертикальной линии. В изображение вертикальной линии не замешивается свет от размытия белых точек (так как белые точки тоже размываются только по вертикали). Поэтому вертикальная линия остается черной и хорошо видна на сером фоне.

Если щель повернуть на 90°, то направление размытия тоже повернется. Теперь каждая точка (и белая, и черная) будет размываться в горизонтальном направлении (рис. 118, б), и от их смешения вертикальные черные линии станут широкими и бледными. Горизонтальные же линии, которые размываются каждая вдоль самой себя, останутся четкими.

 

• Задача 84. Заглядывая в щель

Оглавление


Дата публикации:

24 октября 2004 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика