Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Раритетные издания / Смотри в корень!
Начало сайта / Раритетные издания / Смотри в корень!

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Во главе двух академий

Загадки простой воды

Квантовый мир

Парадоксы науки

Сын человеческий

Этюды о Вселенной

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Задача 35. Гантель в космосе

Пётр Маковецкий. Смотри в корень! Сборник любопытных задач и вопросов

А.

На Луне на тонкой прочной нити горизонтально подвешена «гантель» – стержень с двумя одинаковыми массами на концах (рис. 32а). Точка подвеса совпадает с центром масс гантели. Отклоните слегка гантель от горизонтального положения (рис. 32б) и отпустите ее. Какое положение примет гантель?

Рис. 32

Б.

Обычно отвечают так: поскольку центр масс совпадает с точкой подвеса, то гантель находится в безразличном равновесии. Следовательно, она останется в том положении, в которое мы ее установим: в наклонном, горизонтальном, вертикальном. И добавляют, что законы физики одинаковы на Луне и на Земле, а поэтому для постановки этого опыта не обязательно было забираться на Луну.

Согласен, этот опыт можно было бы поставить и на Земле, но только под колпаком, из-под которого откачан воздух, иначе движение воздуха могло бы раскачивать гантель и замаскировать те тонкие эффекты, которые должны проявиться в этой задаче. Таким образом, в задаче используется не столько Луна, сколько вакуум, существующий над ее поверхностью.

Теперь подсказка по существу задачи. Вес и масса – далеко не одно и то же: вес есть произведение массы на ускорение свободного падения. Обязательно ли центр тяжести совпадает с центром масс?

В.

В горизонтальном положении на две половинки гантели действовали одинаковые ускорения свободного падения (благодаря чему центр тяжести совпадал с центром масс), в наклонном – различные: в соответствии с законом всемирного тяготения Ньютона нижняя половина гантели будет тяжелее верхней, так как она ближе к центру Луны. В результате центр тяжести всей гантели сместится по стержню вниз от центра симметрии (а центр масс, всегда совпадающий с центром симметрии, останется на месте!), и стержень из наклонного положения начнет все быстрее и быстрее поворачиваться в вертикальное. С разгону он пройдет это положение, но затем затормозится и, совершив большое число колебаний, остановится в вертикальном положении, когда энергия его колебаний израсходуется на трение о нить в точке подвеса. Вертикальное положение стержня будет положением устойчивого равновесия, так как центр тяжести займет самое низкое из всех возможных положений. Горизонтальное же положение было положением неустойчивого равновесия.

Вычислим разницу в силах, действующих на обе половины гантели в момент, когда ее стержень, имеющий длину l, уже установился вертикально. Будем полагать, что стержень невесом, а вся масса сосредоточена на его концах. Сила тяготения обратно пропорциональна квадрату расстояния от центра тяготения (в данном случае от центра Луны):

P1/P2 = ma1/ma2 = a1/a2 = R22/R12 = (R1 + l)2/R12 = (R12 + 2R1l + l2)/R12.(1)

Здесь P1 и P2 – веса обеих половинок, a1 и a2 – их ускорения свободного падения, R1 и R2 – их расстояния от центра Луны.

Примем R1 = 1750 км (несколько больше радиуса Луны) и длину стержня l = 100 м. Так как l << R1, то третьим слагаемым в числителе формулы можно пренебречь по сравнению с первыми двумя. Тогда формула упрощается:

P1/P2 = a1/a2 = l + 2l/R1.

Поскольку и 2l << R1, то, казалось бы, можно пренебречь и вторым слагаемым. Но если бы мы так сделали, то наша задача полностью исчезла бы: мы пришли бы к равенству P1 = P2, характеризующему однородное поле тяжести. Наша задача держится именно на наличии второго слагаемого, т.е. на том факте, что поле тяжести неоднородно. После подстановки численных значений l и R1 имеем

a1/a2 = 1 + 2 · 0,1 / 1 750 = 1,000114.

Разница в весе невелика (а в исходном наклонном положении она еще меньше), но в условиях вакуума и слабого трения нити этого достаточно, чтобы повернуть стержень в вертикальное положение.

На Земле (R1 ≈ 6 380 км) относительная разница в весе была бы еще меньше, хотя абсолютная (при одной и той же массе гантели) была бы больше, чем на Луне. Интересно, что на Земле, в условиях наличия атмосферы, положением устойчивого равновесия было бы или вертикальное, или горизонтальное положение, в зависимости от плотности материала, из которого сделана гантель. Дело в том, что в этом случае пришлось бы принимать во внимание не только закон Ньютона, но и закон Архимеда. Поскольку плотность атмосферы убывает с увеличением высоты, то на нижнюю половину гантели действовала бы бОльшая сила Архимеда, чем на верхнюю, и это противодействовало бы силам Ньютона. Для стальной гантели положение устойчивого равновесия – вертикальное, для пробковой – горизонтальное (на малых высотах над Землей, где атмосфера достаточно плотна).

Разумеется, в условиях атмосферы эти силы из-за своей малости не могут дать о себе знать, так как силы трения о воздух и особенно силы, вызванные перемещениями воздуха, существенно больше. Однако это не значит, что рассмотренные здесь явления не имеют практического значения. Ведь существует среда, в которой нет ни ветра, ни воздуха вообще и в которой гантель может быть «подвешена» без нити. Это космическое пространство. Если на экваториальную орбиту вывести спутник, имеющий форму гантели, то на ближнюю к Земле половину спутника будет действовать большее ускорение свободного падения, чем на дальнюю, отчего спутник должен установиться стержнем по направлению к центру Земли и сохранять такую ориентацию вечно (рис. 33а...г). Практическое значение такой ориентации состоит в том, что на ближнем к Земле конце гантели можно укрепить фотоаппарат, телевизионную камеру, и они будут все время направлены на Землю, что позволит вести из космоса непрерывный репортаж о нашей планете (например, о состоянии облачности на всем земном шаре). Можно укрепить остронаправленную антенну.

Рис. 33

В космосе стержень гантели может быть очень тонким (струна): на орбите благодаря невесомости стержень будет растягиваться не всей силой тяжести гантели, а только разницей в силах тяжести, действующих на обе половинки гантели. Это позволяет удлинить «стержень» вплоть до километров, что увеличивает разницу в силах тяготения на его концах.

Как мы уже видели раньше, гантель, прежде чем занять устойчивое вертикальное положение, совершает вокруг него постепенно затухающие колебания. Спутник-гантель тоже будет колебаться* вокруг прямой, соединяющей его с центром Земли (рис. 33д). Но затухать сами собой эти колебания не могут: в космосе нет трения. Как же их потушить? Для этой цели предложено несколько вариантов. Один из них состоит в том, чтобы вместо стержня соединять две половины спутника пружиной (рис. 33г). Колебания спутника вызовут переменные центробежные силы, которые заставят растягиваться и сжиматься пружину, отчего энергия колебаний постепенно израсходуется на разогрев пружины, и колебания прекратятся. Точно так же будут погашены колебания, вызванные ударами о спутник космических пылинок.

* С периодом, близким по величине к периоду обращения вокруг Земли и почти не зависящим от размеров и формы гантели.

Заметим, что у Земли давно уже существует спутник-гантель. Это Луна. Она не совсем шарообразна и этим чуть-чуть напоминает гантель: всегда направлена на Землю своей большой осью. Ее вращение и колебания были заторможены трением приливов, вызываемых в лунной коре тяготением Земли. И Луна ориентировалась на Землю своей большой осью*. А уж потом мы (в предыдущей задаче) ориентировали радиолуч вдоль этой большой оси с помощью тяготения Луны.

* Впрочем, в последнее время эту ориентацию объясняют эксцентричностью ядра, обнаруженной радиолокационными измерениями движения центра масс Луны.

Для тех, кто еще не потерял интереса к задаче, предлагаем доказательство того, что центр тяжести гантели, подвешенной на нити на Луне, при колебаниях перемещается по окружности.

Рис. 34

Пока гантель была в горизонтальном положении, веса обеих ее половин, P1 и P2, были одинаковы, поэтому центр тяжести находился на середине стержня, на расстоянии l/2 от его концов (рис. 34). При отклонении стержня на угол φ вес нижней части гантели P1 возрос, вес верхней части P2 уменьшился. Центр тяжести M есть точка приложения веса тела P, который является равнодействующей весов P1 и P2. Точка приложения равнодействующей двух параллельных сил (а они почти параллельны) делит расстояние между точками приложения составляющих на части, обратно пропорциональные этим составляющим:

P1/P2 = (l/2 + Δ) / (l/2 – Δ),

где Δ – расстояние центра тяжести от точки подвеса.

Концы гантели при отклонении на угол φ разнесены по высоте на величину h, которая и определяет различие весов P1 и P2, как это было показано раньше:

P1/P2 = 1 + 2h/R1.

Учитывая, что h = l·sin φ, и приравнивая две формулы, имеем

(l/2 + Δ) / (l/2 – Δ) = 1 + ([2l·sin φ]/R1).

Решаем уравнение относительно Δ. Это дает

Δ = (l/2) · ([2l sin φ] / 2R1 + 2l sin φ).

Пренебрегая вторым слагаемым знаменателя (поскольку 2l·sin φ << 2R1), получаем окончательно

Δ = l2·sin φ / 2R1.

Для тех, кто знаком с полярной системой координат, уже ясно, что это окружность: ведь полусинусоида в полярной системе координат выглядит, как окружность в декартовых. Для остальных же придется продолжить доказательство.

Найдем максимальное значение Δ. Как видно из формулы Δ = max, если sin φ = max = 1, т.е. если φ = 90°. Подставляя φ = 90°, получаем

Δmax = l2/2R1

Рис. 34

Отложим Δmax вертикально вниз от точки O (рис. 34, отрезок OK) и разделим отрезок OK точкой L пополам, обозначив две половинки OL и LK буквой b:

b = Δmax/2 = l2/4R1.

Соединим центр тяжести M и точку L прямой ML = a. Если нам удастся доказать, что при любом значении φ a = b = const, то это будет означать, что точка M при любом значении φ отстоит от точки L на постоянную величину, т.е. перемещается по окружности. Из треугольника MOL по теореме косинусов

т.е.

или

a = l2/4R1 = b.

Итак, действительно a не зависит от φ, и, следовательно, кривая, по которой движется центр тяжести M, есть окружность, отрезок a – ее радиус, а точка L – центр.

Разумеется, размеры окружности на рис. 34 сильно преувеличены. Ее диаметр в случае рассмотренной нами лунной гантели равен всего лишь

d = Δmax = l2/2R1 = (100 · 100) / (2 · 1 750 000) = 0,0028 м = 2,8 мм.

но при увеличении l в 10 раз d возрастает в 100 раз.

При очень больших l (десятки и сотни километров) приведенные выше формулы перестают быть правильными, так как силы P1 и P2 становятся заметно непараллельными и, кроме того, в формуле (1) нельзя уже будет пренебречь и третьим слагаемым. Не учитывая этого, мы при l = 5000 км получили бы d ≈ 7000 км > l, что означало бы, что центр тяжести вышел за пределы длины гантели. Это абсурд.

 

• Задача 36. Детективно-астрономо-филателистический сюжет

Оглавление


Дата публикации:

9 августа 2003 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика