Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Раритетные издания / Смотри в корень!
Начало сайта / Раритетные издания / Смотри в корень!

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Безумные идеи

Как мы видим то, что видим

Обычное в необычном (Энциклопедия чудес. Книга первая)

Пионеры атомного века

Среди запахов и звуков

Яды – вчера и сегодня

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Задача 24. На Луну со скоростью «Москвича»

Пётр Маковецкий. Смотри в корень! Сборник любопытных задач и вопросов

А.

Можно ли достичь Луны в ракете, удаляющейся от Земли со скоростью автомашины?

Б.

Из каждых десяти опрошенных двое-трое считают это невозможным. Для полета на Луну нужна вторая космическая скорость – и баста!

Космический век уже создал свои, космические, предрассудки. Надо от них освобождаться. Предыдущая задача показала, что законы небесной механики и законы космонавтики – не одно и то же. Попробуйте преодолеть гипноз космических скоростей: опишите полет к Луне с постоянной умеренной скоростью и ваши впечатления о нем. Вам поможет аналогия: чтобы перебросить камень через 10-метровое дерево, надо придать камню вертикальную скорость порядка 15 м/с; в то же время комар достигает его вершины, двигаясь со скоростью 0,1 м/с.

В.

Вы уже знаете, что совершить круговой полет вокруг Земли можно в принципе с любой скоростью – и больше, и меньше первой космической. Но при этом понадобится держать двигатели все время включенными. Первая космическая скорость нужна для кругового полета с выключенными двигателями.

Это же верно и для полета к Луне. С выключенными двигателями можно достичь Луны только при условии, что у Земли корабль приобрел вторую космическую скорость*. А полет с постоянно включенными двигателями позволяет добраться до Луны при любой скорости.

* Точнее, несколько меньшую. Вторая космическая скорость нужна для параболической орбиты, по которой корабль может уйти от Земли бесконечно далеко. Для полета же к Луне достаточно эллиптической орбиты, апогей которой будет в сфере действия Луны, т.е. там, где тяготение Луны больше тяготения Земли. Массы Земли и Луны относятся как 81 : 1; поэтому точка, где силы тяготения Земли и Луны равны, делит прямую Земля – Луна в отношении √[81] : √[1] = 9 : 1.

Теперь о впечатлениях. Ракета летит равномерно и прямолинейно. Следовательно, в ней нет ни перегрузок, ни невесомости. Состояние такое же, как если бы она была неподвижна в той же точке. Существует естественная весомость в соответствии с законом всемирного тяготения. По мере удаления от Земли сила тяготения убывает обратно пропорционально квадрату расстояния. Именно так нужно регулировать и силу тяги двигателей: сумма сил тяготения и тяги должна равняться нулю, иначе полет перестанет быть равномерным и прямолинейным.

Когда до Луны останется одна десятая часть пути, сила тяги должна обратиться в нуль, так как в этой точке земная сила тяготения уравновешивается лунной и не нуждается в уравновешивании силой тяги. Ракета движется равномерно по инерции. Наступила невесомость. После этого лунное тяготение начинает преобладать над земным. Чтобы поддержать равномерность движения, разверните двигатель соплом к Луне и тормозите. Сила тяги должна быть равна силе тяготения Луны (за вычетом остатков земного тяготения). По мере сближения с Луной сила тяготения возрастает обратно пропорционально квадрату расстояния до Луны. И если так же растет и сила тяги (торможения) двигателей, то движение остается равномерным, а невесомость в корабле постепенно превращается в лунную весомость – около одной шестой от земной.

Стало традицией упрекать Жюля Верна за то, что при описании полета из пушки на Луну он допустил ошибку. Да, он упустил из виду, что в его снаряде невесомость будет на протяжении всего полета. Но зато если бы на место его снаряда поставить ракету из нашей задачи, то жюльверновское описание ощущений космонавтов оказалось бы идеально точным (если не считать непрерывной вибрации от двигателей).

Итак, полет к Луне можно осуществить с комфортом: без перегрузок и почти без невесомости. Такие условия может перенести любой нетренированный человек. Почему же современные корабли летают иначе: с сильной перегрузкой на активном участке полета и с полной невесомостью на орбите? Только из-за необходимости экономить топливо. Для непрерывной работы двигателя при равномерном движении к Луне топлива не хватит. В этом смысле вариант хуже, чем движение с малой постоянной скоростью, придумать нельзя. Впрочем, можно: пусть ракета зависнет неподвижно над Землей. Для поддержания ее в неподвижности потребуется непрерывная работа двигателя. При этом топливо может расходоваться сколь угодно долго, а продвижения вперед не будет.

Этот крайний абсурдный случай показывает, чтО надо делать. Нужно как можно быстрее придать ракете необходимую скорость, чтобы топливо сгорело как можно раньше и не было бы лишних затрат энергии на его подъем на высоту. Циолковский показал, что идеальным является мгновенное сгорание топлива и мгновенный разгон ракеты до нужной скорости. Лучше всего приближается к идеалу пушечный выстрел. «Из пушки на Луну» – довольно экономичный способ космического полета. Но это другая крайность, невозможная из-за недопустимо больших перегрузок космонавтов. Сейчас в космонавтике применяется компромиссный вариант, одинаково далекий от обеих крайностей: на активном участке полета космонавт подвергается большим перегрузкам, но в пределах допустимых, а затем наступает невесомость.

Впрочем, в полете к Луне с постоянной автомобильной скоростью имеется и одно существенное неудобство: при скорости 100 км/ч путешествие к Луне будет длиться 3800 часов, т.е. около 160 суток. И хотя движение к Луне с постоянной скоростью довольно комфортабельно, но эту скорость надо выбирать намного выше.

Прежде чем расстаться с задачей, надо сделать одну оговорку: мы не учитывали, что цель нашего путешествия – Луна – сама движется, причем довольно быстро – со скоростью порядка 1 км/с. Это больше скорости «Москвича», но это не значит, что на Луну нельзя попасть со скоростью автомашины. Орбитальная скорость Луны направлена под прямым углом к трассе нашего «авто» (с небольшими периодическими отступлениями от прямого угла в обе стороны из-за эллиптичности орбиты). И если ракета будет хорошо нацелена в точку встречи с Луной и будет строго выдерживать заданные скорость и направление, то она рано или поздно достигнет Луны при любой скорости удаления от Земли.

При обычном (обычном!) космическом полете (например, вроде того, с помощью которого на Луну доставлен наш вымпел) учет движения Луны необходим. И вы не должны из сноски №16 делать вывод, что для достижения Луны достаточно прибыть в нейтральную точку между Землей и Луной без запаса скорости в надежде, что дальше Луна сама привлечет вас к себе. Ракета, неподвижная относительно Земли, двигалась бы там относительно Луны со скоростью около 1 км/с, а эта скорость на таком расстоянии от Луны является гиперболической (относительно Луны). Иными словами, Луна так быстро убежала бы от ракеты, что та не успела бы разогнаться к Луне ее полем тяготения и, совершив петлеобразное движение, вынуждена была бы вернуться восвояси к Земле. Для достижения Луны ракета должна зайти за нейтральную точку со скоростью 1 км/с, направленной попутно с Луной (и нейтральной точкой). Тогда ракета окажется в неподвижности относительно Луны и, находясь все время в ее поле тяготения, будет ею притянута.

 

• Задача 25. Человек за бортом!

Оглавление


Дата публикации:

15 октября 2002 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика