Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Раритетные издания / Смотри в корень!
Начало сайта / Раритетные издания / Смотри в корень!

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Вода знакомая и загадочная

Грюндеры и грюндерство

Крушение парадоксов

Превращение элементов

Среди запахов и звуков

Химия вокруг нас

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Задача 23. В погоне за рекордом

Пётр Маковецкий. Смотри в корень! Сборник любопытных задач и вопросов

А.

В предыдущей задаче корабль совершал вокруг Земли сначала 10, а затем 12 оборотов в сутки. Не так уж много. Можно и больше: Герман Титов облетел за сутки Землю 16 с лишним раз. Хорошо бы побить его рекорд! Например, 20 оборотов в сутки. Ну, как, беретесь?

Б.

– Нет, не беремся! Ведь только что рассмотренный закон Кеплера показывает, что для увеличения числа оборотов надо уменьшить радиус орбиты. И даже если спутник летит на нулевой высоте (r = 6380 км), то и тогда его период обращения составляет 84 мин 30 с, т.е. спутник совершает только 17 оборотов в сутки. Из пропорции

202 / 172 = 63803 / x3

следует, что 20 оборотов в сутки можно сделать лишь на орбите радиусом x ≈ 5730 км, т.е. на глубине 650 км под поверхностью Земли. Так что мы не беремся. А автор?

В.

Не робей перед врагом: лютейший враг
человека – он сам.

Козьма Прутков. «Мысли и афоризмы», №59.

А автор берется! Дайте мне точку опоры... Нет, не то! Дайте запас топлива на борт – и прошу садиться! Кто сказал, что нельзя сделать 20 оборотов в сутки? Кеплер? Но он устанавливал законы для небесной механики, а не для космонавтики. Если наш корабль на орбите будет вести себя как небесное тело, т.е. совершенно пассивно отдаваться во власть силы тяготения, то рекорда, конечно, не будет. Однако у нашего корабля, в отличие от других небесных тел, есть двигатель. Разгоним корабль до нужной для рекорда скорости, большей, чем это. требуется для удержания на круговой орбите. Сила инерции при этом будет стремиться сорвать корабль с круговой орбиты и отбросить прочь от Земли, но мы противопоставим ей силу двигателя, направив реактивную струю точно от Земли. Тогда создаваемая двигателем прижимающая к Земле сила дополнит силу тяготения так, что вдвоем они уравновесят силу инерции.

Будем ставить рекорд на орбите радиусом 7000 км, на высоте 620 км над Землей (поскольку мы не отрываемся пока от бумаги, то имеющаяся на этой высоте радиационная опасность нам не страшна).

Если бы не было силы тяготения, то для удержания корабля массой m на круговой орбите радиуса r при угловой скорости ω к нему нужно было бы приложить центростремительную силу

F = mω2r.

На каждый килограмм массы корабля понадобилась бы удельная центростремительная сила

f = ω2r.

Двадцать оборотов в сутки составляют

ω = 20 · 2π / (24 · 60 · 60) = 0,00145 рад/с.

Следовательно, удельная центростремительная сила (или центростремительное ускорение)

f = 0,001452 – 7 000 000 ≈ 14,7 Н/кг = 14,7 м/с2.

Учтем теперь силу тяготения, которая возьмет на себя

P = mg,

или на каждый килограмм массы силу тяготения g, где g – ускорение свободного падения на нашей орбите, равное

g = g0 (r02 / r2) = 9,8 · (63802 / 70002) ≈ 8,1 м/с2.

Таким образом, на долю прижимающего к орбите двигателя остается

q = fg = 14,7 – 8,1 = 6,6 Н/кг = 6,6 м/с2.

Чтобы не испортить нашего оптимистического настроения, не будем подсчитывать, сколько топлива нам понадобится на борту, чтобы совершить хотя бы суточный такой полет. Отметим только, что двигатели должны быть включены круглые сутки и что топливо будет расходоваться катастрофически быстро, так как масса корабля будет огромной именно по причине необходимости иметь большой запас топлива.

Условия на борту такого космического корабля существенно отличаются от тех, в которых находились первые космонавты. Во-первых, на протяжении всего полета в кабину доносятся шум и вибрация двигателей. Во-вторых, на таком корабле все время существует «весомость» (не правда ли, это несколько непривычно для тех, кто уже освоился с космическим веком!). Правда, в нашем примере она в полтора раза меньше земной (q = 6,6 м/с2 ≈ 2/3g0), что дает одновременно и приятное чувство собственного веса и не менее приятное чувство легкости.

Направлен вектор искусственной тяжести не к Земле, а от нее. Поэтому мы будем постоянно видеть Землю над головой, а под ногами – космическую бездну. В таких условиях не советуем выходить из космического корабля на прогулку без прочного фала: вас унесет с корабля, и вы полетите относительно него с ускорением 6,6 м/с2, но не на Землю, а в противоположную сторону. Правда, в рассматриваемом случае вы не улетите от Земли навсегда, а только перейдете на очень вытянутую эллиптическую орбиту (перигей которой будет в той точке, где вы опрометчиво покинули корабль, а апогей – на расстоянии около 70 000 км от центра Земли), но это является слабым утешением. Если же корабль совершает на орбите радиуса 7000 км в погоне за рекордом 16√[2] ≈ 22,5 или более оборотов в сутки, то, сорвавшись с такого корабля, любой груз перейдет на гиперболическую орбиту относительно Земли, т.е. превратится в искусственную планету. Это же произойдет и с самим кораблем, если его двигатель выйдет из строя.

Заметим, что полет с угловой скоростью более 22,5 оборота в сутки на этой орбите будет сопряжен уже не просто с весомостью, а с постоянной перегрузкой, тем большей, чем больше число оборотов (или радиус орбиты).

Полезно для сравнения рассмотреть обратную задачу: облететь на космическом корабле вокруг Земли со скоростью, меньшей той, которую диктуют законы Кеплера. Это тоже возможно, но теперь реактивная струя должна быть направлена все время к Земле, создавая подъемную силу. Собственно говоря, именно так летит самолет: для того чтобы не сорваться с «круговой орбиты» (полета на постоянной высоте), самолет с помощью двигателя и крыльев создает подъемную силу, помогающую слабой центробежной силе инерции уравновесить силу тяготения. На самолете имеет место «весомость», лишь чуть-чуть уменьшенная за счет удаления от центра Земли и за счет силы инерции (если самолет летит на восток, попутно с вращением Земли). Груз, покинувший самолет, падает на Землю, да и сам самолет при отказе двигателей падает туда же. Правда, благодаря крыльям и наличию атмосферы траектория его падения отличается от кеплеровской.

Достижения космонавтики за последнее двадцатилетие кажутся нам огромными и потрясающими. Но это лишь первые космические шаги человечества, и мы радуемся им так, как радуется ребенок, сделавший свой первый шаг. Человечество еще не победило силу тяготения, оно только сумело приноровиться к ней. Мы еще не можем пренебречь этой силой. Наоборот, находясь на орбите, мы целиком отдаемся ее власти. Мы можем создать силу тяги, превосходящую силу тяготения, но лишь на короткое время; тяготение же действует непрерывно.

Пройдет некоторое время – и во власти космонавта будут новые, могучие, неиссякаемые источники энергии, которые позволят развивать большую мощность в течение длительного времени. Тогда пилот не будет беспокоиться о тщательной коррекции орбиты, о точном моменте включения двигателей и о точной ориентации реактивных струй, так же как грибник, прогуливающийся по лесу, не рассчитывает каждый свой шаг. Космический корабль сможет, если надо, остановиться на орбите и повернуть обратно, установить описанный выше рекорд скорости или, заметив встречный метеорит, развернуться, догнать его и взять с собой. Такому кораблю будут доступны «мертвая петля» и другие фигуры высшего пилотажа. На корабле будут совершаться туристические путешествия с облетом каждой из планет Солнечной системы в течение месячного отпуска. Стоимость путевки умеренная, оплачивается профсоюзом.

 

• Задача 24. На Луну со скоростью «Москвича»

Оглавление


Дата публикации:

15 октября 2002 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика