Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Раритетные издания / Часы. От гномона до атомных часов
Начало сайта / Раритетные издания / Часы. От гномона до атомных часов

Научные статьи

Физика звёзд

Физика микромира

Научно-популярные статьи

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Бермудский треугольник: мифы и реальность

Время, хранимое как драгоценность

Культура. Техника. Образование

Популярная библиотека химических элементов

Ум хорошо...

Ученые – популяризаторы науки

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Препринт

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Часы. От гномона до атомных часов

Станислав Михаль

Атомные часы

Если оценивать точность кварцевых часов с точки зрения их кратковременной стабильности, то надо сказать, что эта точность значительно выше, чем у маятниковых часов, которые, однако, при длительных измерениях обнаруживают более высокую стабильность хода*. У кварцевых часов неправильность хода вызывается изменениями во внутренней структуре кварца и нестабильностью электронных систем.

* Это неправильно, современные кварцевые часы обеспечивают значительно более высокую точность, чем маятниковые – и кратковременную и долговременную (в 100 раз и более). (Прим. науч. ред.)

Главным источником нарушения стабильности частоты является старение кристалла кварца, синхронизирующего частоту осциллятора. Правда, измерения показали, что старение кристалла, сопровождающееся повышением частоты, протекает без больших колебаний и резких изменений. Несмотря на. это, старение нарушает правильную работу кварцевых часов и диктует необходимость регулярного контроля другим устройством с осциллятором, имеющим устойчивую, неизменную частотную характеристику.

Быстрое развитие микроволновой спектроскопии после второй мировой войны открыло новые возможности в области точного измерения времени посредством частот, соответствующих подходящим спектральным линиям. Эти частоты, которые можно было считать эталонами частоты, привели к идее использовать квантовый генератор в качестве эталона времени.

Это решение было историческим поворотом в истории хронометрии, поскольку оно означало замену ранее действовавшей астрономической единицы времени новой квантовой единицей времени. Эта новая единица времени была введена как период излучения точно определенных переходов между энергетическими уровнями молекул некоторых специально выбранных веществ. После интенсивных исследований этой проблемы в первые послевоенные годы удалось построить прибор, работающий на принципе управляемого поглощения микроволновой энергии в жидком аммиаке при весьма низких давлениях. Однако первые опыты с прибором, оснащенным абсорбционным элементом, не дали ожидаемых результатов, поскольку расширение абсорбционной линии, вызываемое взаимными столкновениями молекул, затрудняло определение частоты самого квантового перехода. Лишь методом узкого пучка свободно летящих молекул аммиака в СССР А.М. Прохоров и Н.Г. Басов, а в США Таунс из Колумбийского университета сумели существенно понизить вероятность взаимных столкновений молекул и практически устранить расширение спектральной линии. В этих обстоятельствах молекулы аммиака могли уже играть роль атомного генератора. Узкий пучок молекул, впущенный через сопло в вакуумное пространство, проходит через неоднородное электростатическое поле, в котором происходит разделение молекул. Молекулы в более высоком квантовом состоянии направлялись на настроенный резонатор, где они выделяют электромагнитную энергию с неизменной частотой 23 870 128 825 Гц. Эта частота затем сравнивается с частотой кварцевого осциллятора, входящего в схему атомных часов. На этом принципе был построен первый квантовый генератор – аммиачный мазер (Microwave Amplification by Stimulated Emission of Radiation).

Н.Г. Басов, А.М. Прохоров и Таунс получили в 1964 г. за эти работы Нобелевскую премию по физике.

Изучением стабильности частоты аммиачных мазеров занимались также ученые Швейцарии, Японии, ФРГ, Великобритании, Франции и, не в последнюю очередь, Чехословакии. В период 1968...1979 гг. в Институте радиотехники и электроники Чехословацкой Академии наук построено и пущено в опытную эксплуатацию несколько аммиачных мазеров, которые выполняли роль частотных эталонов для хранения точного времени в атомных часах чехословацкого производства. У них была достигнута стабильность частоты порядка 10...10, что соответствует суточным изменениям хода в 20 миллионных частей секунды.

В настоящее время атомные стандарты частоты и времени используются в основном для двух главных целей – для измерения времени и для калибровки и контроля основных стандартов частоты. В обоих случаях сравнивают частоту генератора кварцевых часов с частотой атомного стандарта.

При измерении времени частота атомного стандарта и частота генератора кристаллических часов регулярно сравниваются, и по выявленным отклонениям определяют линейную интерполяцию и среднюю поправку времени. Истинное время получается тогда из суммы показаний кварцевых часов и этой средней поправки времени. При этом погрешность, возникшая вследствие интерполяции, определяется по характеру старения кристалла кварцевых часов.

Исключительные результаты, достигнутые с атомными стандартами времени, с погрешностью, равной лишь 1 с за целую тысячу лет, были причиной того, что на Тринадцатой генеральной конференции по мерам и весам, проходившей в Париже в октябре 1967 г., было дано новое определение единицы времени – атомной секунде, которая определялась теперь как 9 192 631 770 колебаний излучения атома цезия-133.

Как мы указали выше, при старении кристалла кварца постепенно нарастает частота колебаний кварцевого осциллятора и непрерывно увеличивается разница между частотами кварцевого и атомного осциллятора. Если кривая старения кристалла правильна, то достаточно корректировать колебания кварца лишь периодически, хотя бы через интервалы в несколько дней. Таким образом, атомный осциллятор может не быть постоянно связан с системой кварцевых часов, что весьма выгодно, поскольку ограничивается проникание мешающих влияний в измерительную систему*.

* В настоящее время широко используются рабочие эталоны времени и частоты серийного выпуска, непрерывно действующие и обеспечивающие точность порядка менее одной миллионной секунды в сутки, точность первичных эталонов еще в 100 раз выше. (Прим. науч. ред.)

Швейцарские атомные часы с двумя аммиачными молекулярными осцилляторами, демонстрировавшиеся на Всемирной выставке в Брюсселе в 1958 г., достигли точности в одну стотысячную секунды в сутки, что превышает точность точных маятниковых часов примерно в тысячу раз. Эта точность уже позволяет изучать периодические нестабильности скорости вращения земной оси. График на рис. 39, который представляет собой как бы изображение исторического развития хронометрических приборов и совершенствования методов измерения времени, показывает, как чуть ли не чудодейственным образом повысилась за несколько столетий точность измерения времени. Лишь за последние 300 лет эта точность увеличилась более чем в 100000 раз.

Рис. 39. Точность хода хронометрических приборов в период с 1930 до 1950 г.

Химик Роберт Вильгельм Бунзен (1811...1899) первым открыл цезий, атомы которого при надлежаще выбранных условиях способны поглощать электромагнитное излучение с частотой около 9192 МГц. Это свойство использовали Шервуд и Мак Кракен для создания первого цезиевого пучкового резонатора. На практическое использование цезиевого резонатора для измерения частот и времени направил свои усилия вскоре за этим Л. Эссен, работающий в Национальной физической лаборатории в Англии. В сотрудничестве с астрономической группой «Юнайтед Стейтс Нэвел Обсерватории он уже в 1955...1958 гг. определил частоту квантового перехода цезия в 9 192 631 770 Гц и связал с действующим тогда определением эфемеридной секунды, что намного позднее, как указано выше, привело к установлению нового определения единицы времени. Следующие цезиевые резонаторы были сконструированы в Национальном исследовательском совете Канады в Оттаве, в лаборатории «Суисс де Речерс Хорлоджерес» в Невшателе и др. Первый коммерческий тип атомных часов промышленного производства выпустила на рынок в 1956 г. под названием «Атомихрон» американская фирма «Нешнл Компани Уолден» в Массачусетсе.

Сложность атомных часов заставляет предполагать, что применение атомных осцилляторов возможно лишь в области лабораторного измерения времени, выполняемого с помощью крупных измерительных аппаратов. В действительности так и было до последнего времени. Однако миниатюризация проникла и в эту область. Известная японская фирма «Сэйко-Хаттори», производящая сложные, хронографы с кристаллическими осцилляторами, предложила первые наручные атомные часы, изготовленные опять-таки в сотрудничестве с американской фирмой «Мак-Доннелл Дуглас Астронавтике Компани». Эта фирма производит также миниатюрный топливный элемент, являющийся энергетическим источником для упомянутых часов. Электрическую энергию в этом элементе размером 13 × 6,4 мм производит радиоизотоп прометия-147; срок службы этого элемента равен пяти годам. Корпус часов, изготовленный из тантала и нержавеющей стали, является достаточной защитой от бета-лучей элемента, излучаемых в окружающую среду*.

* Описываемые наручные часы с изотопным элементом питания являются обычными кварцевыми часами и не имеют никакого отношения к атомным часам с квантовыми генераторами. (Прим. науч. ред.)

Астрономические измерения, изучение движения планет в космосе и различные радиоастрономические исследования не обходятся теперь без знания точного времени. Точность, которая в таких случаях требуется от кварцевых или атомных часов, колеблется в пределах миллионных долей секунды. С растущей точностью подаваемой информации о времени нарастали проблемы синхронизации хода часов. Когда-то вполне удовлетворяющий всех метод передаваемых по радио сигналов времени на коротких и длинных волнах оказался недостаточно точным для синхронизации двух недалеко друг от друга расположенных хронометрических приборов с точностью большей, чем 0,001 с, а теперь и эта степень точности уже неудовлетворительна.

Одно из возможных решений – перевозки вспомогательных часов на место сравнительных измерении – дала миниатюризация электронных элементов. В начале 60-х годов были построены специальные кварцевые и атомные часы, которые можно было транспортировать на самолетах. Их можно было перевозить между астрономическими лабораториями, и при этом они давали информацию о времени с точностью одной миллионной доли секунды. Так, например, когда в 1967 г. осуществили межконтинентальную перевозку миниатюрных цезиевых часов, изготовленных калифорнийской фирмой «Хьюлетт-Паккард», этот прибор прошел через 53 лаборатории мира (он был и в ЧССР), и с его помощью был синхронизирован ход местных часов с точностью 0,1 мкс (0,0000001 с).

Для микросекундного сравнения времени можно использовать и спутники связи. В 1962 г. этот метод использовали Великобритания и Соединенные Штаты Америки путем передачи сигнала времени через спутник «Телестар». Намного более благоприятные результаты при меньших затратах дала, однако, передача сигналов с помощью телевизионной техники.

Этот метод передачи точного времени и частоты с помощью синхронизирующих телевизионных импульсов был разработан и развит в чехословацких научных учреждениях. Вспомогательным носителем информации о времени тут являются синхронизирующие видеоимпульсы, которые ни в какой степени не нарушают передачу телевизионной программы. При этом нет никакой надобности вводить в телевизионный сигнал изображения какие-либо дополнительные импульсы.

Условием для использования этого метода является возможность приема одной и той же телевизионной программы в местах нахождения сравниваемых часов. Сравниваемые часы предварительно регулируются до точности в несколько миллисекунд, а измерение должно потом производиться на всех измерительных постах одновременно. Кроме того, необходимо знать разницу во времени, потребную для передачи синхронизирующих импульсов от совместного источника, которым является телевизионный синхронизатор, к приемникам в месте нахождения сравниваемых часов.

 

Башенные часы

Оглавление

 

Дата публикации:

7 сентября 2000 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2016
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика