Перейти в начало сайта Перейти в начало сайта
Электронная библиотека «Наука и техника»
n-t.ru: Наука и техника
Начало сайта / Раритетные издания / Пионеры атомного века
Начало сайта / Раритетные издания / Пионеры атомного века

Научные статьи

Физика звёзд

Физика микромира

Журналы

Природа

Наука и жизнь

Природа и люди

Техника – молодёжи

Нобелевские лауреаты

Премия по физике

Премия по химии

Премия по литературе

Премия по медицине

Премия по экономике

Премия мира

Книги

Биологически активные

Доктор занимательных наук

Механизм ответственной власти

Популярная библиотека химических элементов

Ум хорошо...

Цепная реакция идей

Издания НиТ

Батарейки и аккумуляторы

Охранные системы

Источники энергии

Свет и тепло

Научно-популярные статьи

Наука сегодня

Научные гипотезы

Теория относительности

История науки

Научные развлечения

Техника сегодня

История техники

Измерения в технике

Источники энергии

Наука и религия

Мир, в котором мы живём

Лит. творчество ученых

Человек и общество

Образование

Разное

Пионеры атомного века

Фридрих Гернек

Нильс Бор и Вернер Гейзенберг

Теория атома и соотношение неопределенностей

Советский физик Иоффе, передавая немецким ученым в апреле.1958 года спасенную во время войны личную библиотеку Макса Планка, назвал в своей речи Планка и Эйнштейна учеными, которые совершили переворот в мировой физике и заложили основы физической науки нашего времени, насколько такие преобразования вообще могут быть связаны с отдельными именами.

Эта оценка, несомненно, справедлива. Планк как первооткрыватель элементарного кванта действия и Эйнштейн как создатель квантового учения о свете и теории относительности развили в первые годы нашего столетия те фундаментальные идеи, без которых невозможно представить себе сегодняшнее теоретическое естествознание.

Но после Макса Планка и Альберта Эйнштейна, а в некотором отношении и наряду с ними следует назвать и по достоинству оценить исследователя, который открыл новые пути в атомной физике, стал учителем двух поколений физиков-атомщиков и чья модель атома стала символом атомного века – Нильса Бора.

Гениальный датский физик принадлежит к числу самых известных исследователей современности. Среди значительных ученых, работавших в области точного естествознания, он был в философском отношении наиболее оспариваемым мыслителем после Эйнштейна. Его «принцип дополнительности», одно из удивительных достижений диалектического мышления, критиковали с различных точек зрения, используя различные аргументы.

Период, предшествовавший появлению работы Бора об атоме водорода (1913), оказавшей столь значительное влияние на развитие теоретической физики, был отмечен рядом важных физических открытий и изобретений.

В 1911 году Вильсон создал «туманную камеру», ставшую вскоре незаменимым устройством для исследования атомов и атомных частиц. Камера Вильсона позволила наблюдать траектории элементарных частиц и доказала реальность их столкновений, которые становились видимыми в виде разветвлений и внезапных изменений направления движения В том же году Резерфорд открыл атомное ядро и создал модель атома, послужившую исходной точкой научно обоснованной теории атома. Год спустя Лауэ открыл интерференцию рентгеновских лучей, дав тем самым науке такое средство исследования, которое имело величайшее значение для расцвета атомной физики.

В этих условиях начал свою научную деятельность молодой датский физик. Появление его статьи об атоме водорода стало, как писал Джеймс Франк, «днем рождения современной теории атома». Этой я последующими работами Бор положил начало теоретическому пониманию механизма атома. Для этого необходим был свободный от предубеждений подход к явлениям микромира, требовалась большая смелость и необычайная сила духа для выдвижения и разработки новой точки зрения.

Нильс Бор родился 7 октября 1885 года в Копенгагене. Его отец Христиан Бор, известный естествоиспытатель, с 1886 года был профессором физиологии в Копенгагенском университете и сам немало экспериментировал в области физики. Мать Бора происходила из семьи педагогов.

Родители рано заметили выдающиеся способности сына и способствовали их развитию. Вместе со своим младшим братом Харальдом, впоследствии крупным математиком, Нильс рос в чрезвычайно благоприятном для развития его способностей социальном и научном окружении: «Я рос в семье с глубокими духовными интересами, где обычными были научные дискуссии; да и для моего отца вряд ли существовало строгое различие между его собственной научной работой и его живым интересом ко всем проблемам человеческой жизни». Так говорил Бор позднее о своем родительском доме.

Еще будучи учеником, Нильс Бор под руководством своего отца проводил небольшие физические опыты. В школьные годы для него не существовало трудностей, о которых вспоминали впоследствии другие известные физики. И в университете успехи молодого Бора были столь велики, что уже на втором году обучения профессор мог использовать его в качестве помощника. Вспомним о молодом Эйнштейне, которому после получения диплома так долго пришлось ждать места ассистента в высшей школе!

За экспериментальное исследование поверхностного натяжения воды, которое он провел в 1907 году в лаборатории своего отца на основе работ Рэлея, известного английского физика и лауреата Нобелевской премии, студент Бор был награжден золотой медалью Копенгагенской Академии наук. Это исследование осталось, собственно, его единственной большой экспериментальной работой. Обладая ярко выраженными склонностями и к экспериментальной физике, Бор принадлежал к тем физикам-теоретикам, которые экспериментировали только в годы своей юности.

Как и многие экспериментаторы того времени, Бор проводил свои опыты, используя самодельные приборы. При этом он работал с такой необычайной основательностью, что окончание работ всегда слишком затягивалось. Как он позднее рассказывал, отцу приходилось отсылать его к деду с бабушкой, чтобы там в сельском уединении, вдали от лаборатории, он наконец мог приступить к изложению на бумаге достигнутых результатов и их оценке.

Начинающий физик интересовался также и гуманитарными науками. Лекции философа Хёффдинга по формальной логике и по теории познания он слушал регулярно и так внимательно. что даже мог указать ученому на некоторые ошибки, допущенные им в одной из работ.

Лекции по философии имели для Бора только информативное значение. Хёффдинг не пытался выработать у своих слушателей определенную философскую систему; он излагал студентам проблемы философии, следуя процессу их развития в истории духовной жизни человечества, как бы заставляя слушателей участвовать в попытках отдельных философов и философских школ дать ответ на основные проблемы мышления.

По-видимому, молодой Бор не увлекся ни одной из философских систем. Однако известно, что ему очень нравились некоторые мысли Спинозы. Охотно читал он также сочинения своего соотечественника Кьеркегора, одного из предшественников экзистенциализма, восхищаясь больше их блестящим стилем, чем содержанием. Но более всего своим вниманием к философии Бор был обязан непритязательной книжке одного датского автора, в юмористической форме толковавшей диалектику Гегеля.

Двадцати пяти лет, в 1910 году, Нильс Бор получил степень доктора философии в университете своего родного города, написав работу по электронной теории металлов. Он расширил и углубил те методы исследований, которые были разработаны Дж.Дж. Томсоном и Г.А. Лоренцом. При этом он впервые столкнулся с квантовой гипотезой Планка.

После защиты диссертации молодой исследователь провел несколько месяцев в Кембридже в известной Кавендишской лаборатории, в которой тогда работал Дж.Дж. Томсон. Затем он направился в Манчестер к Эрнсту Резерфорду, одному из самых блестящих физиков-атомщиков начала XX века. Там он занимался вначале теоретическим исследованием торможения альфа- и бета-лучей, а затем приступил к изучению структуры атомов. Почти четыре года, если не считать временную доцентуру в Копенгагене, работал Бор под руководством Резерфорда.

Письма того времени свидетельствуют о его благодарности учителю (см. факсимиле).

Исходя из резерфордовской модели атома, Бор, вернувшись в Копенгаген, в начале 1913 года развил новый взгляд на строение атома водорода. При содействии Резерфорда его работа «О строении атомов и молекул» была опубликована в «Философикал Мэгэзин». В этой работе Бор творчески объединил идеи Резерфорда, Планка и Эйнштейна, спектроскопию и квантовую теорию.

На основе экспериментов по прохождению альфа-лучей сквозь вещество, связав их с работами Филиппа Ленарда и Жана Перрена, Резерфорд предположил, что атом состоит из положительно заряженного ядра, которое, несмотря на малый размер, заключает в себе почти всю массу атома, и какого-то числа отрицательно заряженных электронов, которые вращаются вокруг атомного ядра по орбитам, как планеты вокруг своего центрального светила. Химическую связь между атомами различных элементов Резерфорд объяснил своего рода взаимодействием между внешними электронами соседствующих атомов; она определяется атомным ядром только опосредованно: его электрическим зарядом, который регулирует число электронов в электрически нейтральном атоме.

Хотя эта модель атома позволяла объяснить некоторые физические и химические явления, однако она не подтверждалась опытом спектроскопии. Остающиеся неизменными, четко обозначенные спектры атомов нельзя было объяснить на основе представлений Резерфорда. Резерфордовский атом не согласовывался также с законами электродинамики Максвелла – Лоренца. При таком строении атом должен был быть в высшей степени неустойчивым, через кратчайшее время он бы распался, потому что вращающиеся электроны, потеряв свою энергию на излучение, упали бы на ядро и пришли бы в состояние покоя.

Против резерфордовской модели атома можно было выдвинуть еще одно возражение, которое Гейзенберг сформулировал так: «Никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние. В то время как, например, атом углерода остается атомом углерода и после столкновения с другими атомами или после того, как он, вступив во взаимодействие с другими атомами, образовал химическое соединение».

Заслуга Бора в том, что он устранил коренные недостатки, присущие модели, предложенной Резерфордом, введя учение о квантах света в теорию строения атома. Его «портрет атома» – это чисто механическая модель с ядром и электронами, которые вращаются вокруг ядра по оптимальным, жестко фиксированным орбитам, представляющая собой, по словам Бора, «маленькую механическую систему, которая в известных главных чертах напоминает нашу планетную систему». Однако ведет себя эта атомная система не так, как классическое механическое образование, которое может принимать и отдавать любое количество энергии, а совершенно по-иному, в соответствии с законами квантового учения.

Десять лет спустя Планк говорил, что смелость теории атомного механизма Бора и полнота его разрыва с укоренившимися и якобы надежными воззрениями не имеет себе равных в истории физической науки. Теория Бора блестяще согласовалась с фактами, что как раз и является важнейшей задачей теории. Наряду с несомненным дарованием в «искусстве синтеза» он обнаружил также отчетливое понимание действительности.

Ставшая всемирно известной атомная модель Бора построена на двух требованиях – «квантовых условиях».

Первое: электроны в атоме вращаются под влиянием кулоновских сил по известным свободным от излучения «квантовым орбитам», соответствующим определенным энергетическим уровням.

Движение электронов при этом определяется константой Планка и последовательностью целых чисел.

Второе: электроны совершают внезапные скачкообразные переходы, «квантовые скачки», между своими свободными от излучения орбитами. Частота колебаний испускаемого при этом света регулируется также квантом действия.

В результате того, что он ввел во внутриатомную динамику эти два кажущиеся произвольными постулата о квантах, точное математическое изложение которых было дано Зоммерфельдом, Бор смог построить удовлетворительную модель атома водорода как самого простого атома. «Тогда как первый постулат подчеркивает общую устойчивость атома, второй прежде всего имеет в виду существование спектров, состоящих из резких линий». Так объяснял Бор оба квантовых условия в своем нобелевском докладе.

Действительно, таким образом могли быть объяснены многие основополагающие результаты спектроскопических исследований. Бор смог расшифровать оптическое явление, которое до того не было разгадано: расположение спектральных линий атома водорода, закономерность которого установил в 1885 году швейцарский физик Иоганн Якоб Бальмер.

Бальмер, имевший значительные заслуги в разработке основанного Бунзеном и Кирхгофом спектрального анализа, был первым, кто в эмпирически найденной формуле математически описал расположение спектральных линий, которые испускаются атомом водорода при электрическом разряде или при тепловом движении. Под непосредственным влиянием исследований Штарка по динамике атома Бору удалось убедительно, с точки зрения физики объяснить «серию Бальмера» и с помощью своей атомной модели вывести предложенную Бальмером формулу.

Из факта четких эмиссионных и абсорбционных линий Бор сделал в духе эйнштейновского учения о квантах света вывод о том, что атом водорода может существовать только при совершенно определенных энергетических состояниях: при энергетических уровнях, которые соответствуют этим состояниям. Если атом при добавлении энергии поднимается на более высокий энергетический уровень, что соответствует переходу его электрона на более далекую от ядра орбиту, то при возвращении в прежнее состояние, то есть обратном переходе электрона на близкую к ядру орбиту, полученная энергия отдается обратно. При этом атом излучает квант света, энергетическое содержание которого определяется из разницы между энергией возбужденного состояния и основного состояния. Под «возбуждением» понимается добавление энергии.

Посредством применения понятия кванта в атомном учении стало возможным решить загадку спектральных линий и по крайней мере в общих чертах объяснить поразительную устойчивость атомов, строение их электронных оболочек и периодическую систему элементов. Теория спектральных линий Бора открыла новую область исследований.

«Большое количество экспериментального материала, полученное спектроскопией в течение нескольких десятилетий, – писал Гейзенберг, – теперь, при изучении квантовых законов движения электронов, стало источником информации. Для той же самой цели могли быть использованы многие эксперименты химиков. Имея дело с этим экспериментальным материалом, физики постепенно научились ставить правильные вопросы. А ведь часто правильно поставленный вопрос означает больше чем наполовину решение проблемы».

Научное достижение 27-летнего датчанина было преобразующим, революционным. Он смог совершить его только потому, что ему не мешала идти вперед консервативная направленность ума, излишнее благоговение перед классическими преданиями. Поэтому Бор, а не Планк стал творцом атомной механики и истинным вождем «квантовых теоретиков».

При этом нельзя, конечно, забывать, что основополагающая идея квантования энергии принадлежит не Бору, а Планку. Бор воспринял ее у Планка: в форме эйнштейновского квантового учения, которое уже в основном выходило за рамки гипотезы Планка. Итак, путь идеи проходил от Планка через Эйнштейна к Бору.

«Полвека спустя введение дискретных квантовых состояний электронной системы атома может показаться чем-то само собой разумеющимся, – говорил Джеймс Франк. – Казалось, если бы Бор не ввел эту идею, то вскоре кто-нибудь другой пришел бы к тому же выводу. Такое мнение в корне ошибочно. Сколько мужества, независимости и сосредоточенности на существенном было необходимо, показывает та медлительность, с которой эта идея находила признание у огромной массы физиков».

Так как планковская квантовая гипотеза в то время еще считалась спорной, не удивительно, что попытка Бора основать модель атома на понятии квантов не имела сначала у физиков большого успеха. Некоторым теория Бора казалась «поразительным гибридом, полученным с помощью прививки некоторых черт квантовой теории, исходящей из представлений о прерывности материи, к теории планетных орбит – типичной классической теории, рассматривающей мир как нечто непрерывное», как писал в автобиографии Норберт Винер, основатель кибернетики.

Резерфорд, несмотря на некоторые сомнения, воспринял модель атома Бора с одобрением; но другие известные физики-атомщики решительно отклонили ее. К их числу относился и английский лауреат Нобелевской премии Дж.Дж. Томсон, который приобрел мировую славу благодаря открытию электрона, а также благодаря другим основополагающим достижениям в области исследования атома и который выдвигал свою модель атома.

Арнольд Зоммерфельд, посвятивший впоследствии все свои силы разработке теории атома Бора, вначале также не хотел ничего знать о применении объяснения «серии Бальмера» к модели атома. В дальнейшем фундаментальные исследования Зоммерфельдом тонкой структуры линий водорода и его расчет возможных орбит электронов с учетом моментов теории относительности способствовали тому грандиозному подъему атомизма, который в значительной степени привел к стиранию границы между физикой и химией. Его труд «Строение атома и спектральные линии» считается классической монографией раннего периода современной теории атома.

С точки зрения история науки следует также отметить, что даже Джеймс Франк и Густав Герц, два немецких исследователя, которые в 1913 году внесли важный вклад в атомную физику, вначале не признавали ценности работы своего датского коллеги.

«Работа Бора в первые годы после ее появления была мало известна в Германии, – писал Джеймс Франк в статье о Нильсе Боре в «Натурвиссеншафтен» в 1963 году. – Литературу лишь бегло просматривали, и так как в то время среди физиков господствовало откровенное недоверие к успешности попыток сконструировать модель атома при тогдашнем уровне знаний, то мало кто давал себе труд внимательно прочитать работу. Особо следует отметить, что Густав Герц и пишущий эти строки вначале были неспособны понять огромное значение работы Бора». Работы Франка и Герца по возбуждению спектральных линий путем облучения атомов электронами решительным образом поддерживали воровское понимание строения атома и подтверждали это понимание в его основе. Оба физика работали в Физическом институте Берлинского университета.

Джеймс Франк, родившийся в Гамбурге 26 августа 1882 года в семье состоятельного коммерсанта, с 1903 года, после двух семестров в Гейдельберге, во время которых он занимался преимущественно физикой и химией, а также геологией, учился в Берлине у Эмиля Фишера, Макса Планка и Эмиля Варбурга. В 1906 году он получил степень доктора, защитив диссертацию по проблеме разрежения газа. Затем он стал ассистентом Генриха Рубенса. Весной 1911 года Франк получил право преподавания физики. В своей первой лекции он говорил о тепловом излучении.

В это же время получил докторскую степень Густав Герц, сын гамбургского адвоката и племянник первооткрывателя электромагнитных волн. Проведя несколько семестров в Гёттингене, где он слушал Давида Гильберта и Макса Абрахама, и в Мюнхене у Рентгена и Зоммерфельда, Герц продолжал свое образование с 1908 года в Берлине у Планка и Рубенса. После получения степени доктора «молодой физик, одаренный в теоретическом отношении, полный идей и при этом чрезвычайно добросовестный», по отзыву Планка, стал ассистентом Рубенса в Физическом институте университета. Здесь началась его совместная работа с Джеймсом Франком, блестящий результат которой был опубликован в 1913 году.

Опыт по столкновению электронов, который Франк и Герц ставили сначала с парами ртути, в определенном отношении кажется противоположностью фотоэлектрического эффекта. В последнем случае взаимодействие между светом и электронами состоит в том, что из поверхности металла движущимися квантами света выбиваются и рассеиваются электроны; при столкновении же электронов, наоборот, свободные электроны вызывают «возбуждение» атомов, увеличение энергии, что ведет к испусканию квантов света. При упругом столкновении с атомами ударяющиеся электроны отдают свою энергию.

При этом выяснилось, что к атому ртути при помощи удара электрона может быть подведено не любое количество энергии, а такое, которое соответствует переходу атома из его основного состояния в другое состояние, свободное от излучения. Напряжение, требующееся для этого, называется «напряжением возбуждения». При этом в первый раз могла быть экспериментально подтверждена планковская константа h, событие, которое имело огромное значение для признания квантового учения.

Опыт Франка – Герца, который привлек большое внимание специалистов, принадлежит к числу самых известных экспериментов в новейшей истории физики. Оба исследователя получили за него Нобелевскую премию 1925 года. В своей работе, правда, они пользовались определенными экспериментальными методами, которые использовал еще Ленард, но они существенно усовершенствовали их и намного превзошли Ленарда, опираясь при этом также на результаты экспериментов английских исследователей атома. Прежде всего Франк и Герц распространили свои опыты на инертные газы и пары металлов, которые оказались подходящим материалом для изучения взаимодействия между электронами и отдельными атомами.

Предложенный Франком и Герцем метод сталкивания электронов открыл большие возможности для выяснения строения атома. Как говорил Густав Герц в своем нобелевском докладе И декабря 1926 года, их результаты «дали непосредственное экспериментальное подтверждение основных предположений теории атома Бора» Существование «дискретных энергетических уровней» теперь уже не могло серьезно подвергаться сомнению.

Вначале оба молодых физика-экспериментатора не заметили тесной связи своих исследований и их результатов с новым боровским пониманием атомной механики «Мы читали работу Бора, – писал Франк, – до того, как отправили наши рукописи в печать, однако решили послать их, не упоминая в них этой работы, так как мы столкнулись бы с мнимой трудностью объяснения сильной ионизации ртутной дуги, если, как делал вывод Бор, энергия, используемая для ионизации атомов, значительно превышает ту, которая вызывает напряжение возбуждения» Это кажущееся разногласие позднее получило объяснение.

Франк считал, что современные физики быстро научились, вслед за Бором, правильно толковать все атомы периодической системы элементов в согласии с новой точкой зрения Этому, естественно, способствовало и то, что в работах многих известных исследователей теория Бора была положена в основание атомной механики.

В год опубликования своей работы о модели атома (1913) Нильс Бор стал доцентом Копенгагенского университета, где он читал лекции по физике для медиков Через год он отправился читать лекции в Манчестер. Но уже в 1916 году он принял профессуру в Копенгагене В 1920 году для него была создана кафедра теоретической физики В 1921 году на Блегдамсвей был открыт институт. Бор руководил им до конца своей жизни, с небольшим перерывом, обусловленным событиями второй мировой войны.

С начала 20-х годов создатель квантовой модели атома стал одним из самых известных физиков мира. На своих коллег он производил очень глубокое и незабываемое впечатление Эйнштейн, с которым Бор познакомился в 1920 году в Берлине, писал о нем физику Эренфесту: «Это необычайно чуткий ребенок, который расхаживает по этому миру как под гипнозом»

В Копенгагене у Бора вначале было немного сотрудников. Одним из первых среди них был Х.А. Крамерс, который стал читать лекции вместо Бора, когда тот после присуждения ему Нобелевской премии (1922) был освобожден от обязанностей чтения лекций с тем, чтобы он смог полностью посвятить себя научному исследованию.

Освобождение от обязанности читать лекции, конечно, было ученому по душе еще и по другим причинам. Как говорил Франк, у Бора «не было никакого природного дарования» к чтению курса лекций в соответствии с принятыми в университете требованиями Он говорил заикаясь, тихо и невнятно и, как свидетельствуют, в самые ответственные моменты закрывал к тому же ладонью рот. Трудности доставляло ему и распределение учебного материала по часам.

Но как и Лауэ, который тоже не относился к числу хороших лекторов, Бор блистал на коллоквиумах, где часто выступления участников принимали форму научного диалога. Здесь он, по словам Франка, чувствовал себя «легко и совершенно как дома» Всегда было удовольствием, говорил Франк, наблюдать его во время дискуссий по его работам или слушать его замечания относительно выступлений других физиков Быстрота и глубина мышления Бора и его способность тотчас же схватывать сущность каждый раз заново поражали тех, кто с ним сталкивался. Некоторые сверстники Бора на заре теории атома испытали это на докладах Бора в Берлине и Гёттингене, которые он читал в стиле коллоквиумов.

Значительным явлением в истории науки был гёттингенский «Фестиваль Бора», состоявшийся летом 1922 года. Физик Фридрих Гунт писал: «Бор в течение трех недель по понедельникам, вторникам и средам во время семинаров (а чаще значительно дольше) делал доклады по квантовой теории атома и периодической системе элементов. Говорил Бор невнятно, а мы как младшие не могли сидеть на передних скамьях среди именитых гостей, так что мы напряженно вслушивались, раскрыв рты и забывая об ужине и о требованиях наших голодных желудков. Мы, конечно, кое-что читали у Зоммерфельда о строении атома и спектральных линиях, в 1920 году и Дебай прочитал нам (в довольно прохладной неотапливаемой аудитории) лекцию о квантовой теории; но то, о чем говорил Бор, звучало совершенно по-иному, и мы чувствовали, что это было что-то очень существенное. Сегодня уже не передашь, каким ореолом было окружено это мероприятие; для нас оно было таким же выдающимся событием, как и Гёттингенские фестивали Генделя, проводившиеся в те годы».

Нильс Бор обладал необычайной способностью генерировать научные идеи и оказался настолько умелым руководителем коллектива исследователей, что благодаря ему Копенгаген стал «столицей атомной физики» и Меккой для исследователей атома из всех стран. Многие молодые физики по собственной инициативе или по специальному приглашению Бора приезжали работать в Копенгаген под его непосредственным руководством. Некоторые из них находились там несколько недель или месяцев, как молодой советский физик Л.Д. Ландау, ставший впоследствии лауреатом Нобелевской премил, но многие оставались на долгие годы.

Как и у Марии Кюри, в распоряжении Нильса Бора были денежные средства одного американского фонда, которые он использовал для поощрения научной «поросли». «Его учениками становились одаренные молодые теоретики, – писал Франк, – получившие подготовку по теоретической физике и особенно по применению математики при разработке теоретических проблем в других крупных центрах этой области науки. То, чему учил их Бор на собственном примере и путем дискуссий, было искусством, в котором он для всех оставался образцом: продумывание проблемы до конца, неотступное преодоление самообмана, мужество перед, казалось бы, непреодолимыми препятствиями».

В кругу его учеников педагогические способности Бора проявились блистательным образом, насколько при этом, как говорил Франк, вообще можно говорить об «учении», так как «свойствам характера нельзя научить, но можно вскрыть их значение и тем самым пробудить их к жизни у тех, у кого они, так сказать, находятся в скрытом виде». Под его руководством происходили непринужденные, свободные от какого-либо давления с его стороны теоретические споры. Вопросы, которые интересовали учеников Бора и всех участников дискуссии, обсуждались откровенно и безбоязненно.

Многие известные физики-теоретики нашего времени с гордостью и благодарностью называют себя учениками Бора. Одним из самых значительных среди них является Гейзенберг, который впервые услышал Бора в 1922 году и два года спустя приехал по его приглашению в Копенгаген.

Вернер Гейзенберг родился в 1901 году в Вюрцбурге в семье учителя гимназии, позднее работавшего в качестве профессора средне и новогреческого языка в Мюнхенском университете. Он учился у Зоммерфельда и Вилли Вина в Мюнхене, некоторое время был также учеником Борна в Гёттингене и завершил свое образование в 1923 году в Мюнхене, написав докторскую диссертацию в области теории переноса энергии. После этого он работал в качестве ассистента Борна в Гёттингене, где получил право на преподавание теоретической физики, отправившись незадолго до этого на полгода в Копенгаген как стипендиат-исследователь.

Год спустя Гейзенберг опубликовал свое первое фундаментальное исследование по квантовой теории – статью «О квантовомеханическом толковании кинематических и механических связей». В ней он попытался выработать необходимые основы атомной механики, которая строилась бы исключительно на связях между принципиально наблюдаемыми величинами без применения моделей.

Эта статья Гейзенберга заложила фундамент так называемой «матричной механики», детальная разработка математического аппарата которой принадлежит прежде всего Борну. При этом было вновь подтверждено эмпирическое требование, обнаружившее свою эвристическую плодотворность еще при создании теории относительности: научно реализованы в физических теориях могут быть только действительно наблюдаемые и измеримые факты.

По словам Борна, Гейзенберг отказался от «представлений об электронных орбитах с определенными радиусами и периодами обращения, потому что эти величины не могли быть наблюдаемы». Таким образом, он рассек «гордиев узел при помощи философского принципа и заменил догадки математическим правилом». Это достижение Гейзенберга можно сравнить с подвигом Эйнштейна, упразднившего в 1905 году понятие абсолютной одновременности.

Выяснилось, что атомную модель Бора не следует понимать буквально, как это было вначале. Она была применима только для одноэлектронной системы атома водорода и не могла быть безоговорочно перенесена на атомную систему со многими электронами. Процессы в атоме не могли быть наглядно представлены в виде механических моделей по аналогии с событиями в макромире. Нельзя было схематически применять законы небесной механики для объяснения внутриатомных связей. Даже понятия пространства и времени в существующей форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Бесстрашие мышления, необходимое для разрешения новых физических проблем, метко охарактеризовал сам Гейзенберг: «На каждом существенно новом этапе познания нам всегда следует подражать Колумбу, который отважился оставить известный ему мир в почти безумной надежде найти землю за морем».

Когда Крамере, первый сотрудник Бора, принял приглашение занять должность профессора в Утрехтском университете, Гейзенберг изъявил готовность возвратиться в Копенгаген и стать в качестве преемника Крамерса доцентом теоретической физики Его лекции хорошо воспринимались студентами также и потому, что он в совершенстве владел датским языком. Во время этого второго пребывания в Копенгагене, в 1926...1927 годах, молодой немецкий физик неоднократно вел с Бором страстные споры о толковании квантовых явлений.

«Я вспоминаю, – писал позднее Гейзенберг, – о многочисленных дискуссиях с Бором, которые длились до поздней ночи и которые мы заканчивали почти в полном отчаянии. И если я после таких дискуссий один отправлялся на короткую прогулку в соседний парк, то повторял снова и снова вопрос о том, может ли природа действительно быть такой абсурдной, какой она кажется нам в этих атомных экспериментах».

Результаты этой работы мысли были сформулированы в 1927 году как «соотношение неопределенностей» Гейзенберга и «принцип дополнительности» Бора.

Нильс Бор был физиком до мозга костей. Он обладал, о чем говорил в одном из писем и Эйнштейн, гениальной интуицией в области физики, необычайной силы внутренним видением. Его почти сомнамбулическая уверенность при выявлении ключевых вопросов не имела себе равных. Вместе с тем во владении математическим аппаратом Бор во многом уступал своим коллегам. В разговоре с Паули он сделал однажды характерное признание, что его интерес к физике это интерес не математика, а, скорее, ремесленника и философа.

Действительно, математическое одеяние квантовой механики, основы которой, по сути, опираются на работы Бора, создано не им самим, а другими: Борном, Гейзенбергом, Иорданом, Паули, Дираком, Шрёдингером. Здесь сказалась известная ограниченность его огромного дарования. «Выдающиеся математические способности или даже виртуозность в той мере, в какой ими обладают многие из его учеников, ему не даны. Он мыслит наглядно и с помощью понятий, но не собственно математически». Так отозвался Карл Фридрих фон Вайцзеккер о творце современной теории атома. Он сообщал также, что среди учеников и сотрудников Бора ходила шутка о том, что учитель знает будто бы только два математических знака: «меньше, чем...» и «приблизительно равно».

Теоретико-познавательный вклад Бора в развитие атомной физики заключается в установлении двух принципов: соответствия и дополнительности. Их вызвала к жизни потребность ученого изобразить ясно, насколько это возможно, основы всех теоретико-познавательных выводов из атомной механики.

«Вначале он мог быть доволен, – писал Франк, – когда пришел к однозначному и непротиворечивому объяснению перехода от континуума к дискретному квантованию и, более того, принципиально связал индетерминизм элементарных процессов с методами, предполагающими возможность наблюдения. Иными словами, он должен был исследовать с теоретико-познавательных позиций сущность всякого наблюдения. Много лет посвятил Бор разработке этих проблем, пока, наконец, не пришел к удовлетворительным результатам. Они были изложены в написанной вместе с Розенфельдом работе, которая, насколько я могу ее оценить, представляет собой одну из самых прекрасных и самых глубоких работ по теории познания».

Принцип соответствия, который Бор выдвинул еще в 1916 году, означал, что квантовая теория может быть определенным образом согласована с классической теорией, то есть «соответствовать» ей. Классическая механика блестяще подтвердилась не только во всех макрофизических процессах, но также и во всех микрофизических процессах, вплоть до движения атомов как целого, что показала кинетическая теория материи. Итак, новая атомная механика должна была привести в конце концов к тем же результатам, что и классическая. Она должна была асимптотически перейти в классическую механику для крайних случаев больших масс или больших размеров орбит. Если значение элементарного кванта действия h рассматривать как бесконечно малую величину или пренебречь им, то практически будут действовать законы классической физики.

Если, например, электрон в атоме водорода переходит на орбиты, все дальше отстоящие от ядра, и наконец полностью отрывается от него, то законы излучения квантовой механики с большим приближением принимают форму законов классической электродинамики. Принцип соответствия передает, таким образом, связь между двумя противоречащими друг другу теоретическими построениями: микрофизикой и макрофизикой, границы между которыми определяются константой Планка.

Принцип соответствия, в котором старое было смело соединено с новым, оказался очень полезным для приблизительных расчетов интенсивности спектральных линий. Он сыграл большую роль в дальнейшем развитии квантовой физики. «Теоретическая физика жила этой идеей последующие десять лет, – говорил Макс Борн. – ...Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано».

Примерно десятилетие спустя, на съезде физиков, который был устроен летом 1927 года в Комо по случаю столетия со дня смерти великого итальянского физика Алессандро Вольта, Бор изложил свой второй принцип, принцип дополнительности, сделавший возможным непротиворечивое толкование явлений квантовой механики. Основные выводы появились под названием «Квантовый постулат и новое развитие атомистики» в журнале «Натурвиссеншафтен», а в первоначальном варианте на английском языке в журнале «Нейче».

Эта статья Бора, в которой впервые излагалось так называемое копенгагенское толкование квантовой механики, принадлежит к тем классическим документам физической науки, которые непосредственно послужили теоретической подготовке атомного века. Прошло более двух десятилетий, прежде чем выдвинутая Планком идея о квантах была настолько развита, что сделала возможным действительное понимание внутриатомных закономерностей.

С понятием корпускулы было связано представление о каком-то предмете, имеющем строго определенную величину движения и в данный момент находящемся в строго определенном месте, как это наблюдается в макромире, например у брошенного мяча, положение которого и скорость движения в любой момент могут быть точно измерены и определены.

Однако выяснилось, что невозможно не только практически, но и в принципе с одинаковой точностью одновременно установить место и величину движения атомной частицы. Только одно из этих двух свойств может быть определено точно. Чем точнее и определеннее измеряют одну из двух величин, тем менее точной и определенной оказывается другая. Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин, которые «канонически связаны», то есть положения и величины движения микрочастицы.

Это естественное состояние «обоюдной неопределенности», как говорил Бор, которое сопутствует каждому квантовомеханическому измерению, было математически отображено Гейзенбергом как «соотношение неточностей» или «соотношение неопределенностей». Это открытие принадлежат к величайшим достижениям теоретической физики.

В своей книге «Физика атомного ядра» Гейзенберг так охарактеризовал открытый им закон природы: «Никогда нельзя одновременно точно знать оба параметра, решающим образом определяющие движение такой мельчайшей частицы: ее место и ее скорость. Никогда нельзя одновременно знать, где она находится, как быстро и в каком направлении движется. Если ставят эксперимент, который точно показывает, где она находится в данный момент, то движение нарушается в такой степени, что частицу после этого даже нельзя снова найти. И наоборот, при точном измерении скорости картина места полностью смазывается».

Гейзенберговское соотношение неопределенностей есть выражение невозможности наблюдать мир атома, не разрушая его. Любая попытка дать четкую картину микрофизических состояний должна поэтому опираться или на корпускулярное, или на волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения атомной частицы, как это бывает, например, при рассеивании электронов. При экспериментах, направленных на точное определение места и времени, напротив, используется волновое объяснение, как это бывает, например, при прохождении электронов через тонкие пластинки или при наблюдении отклоненных лучей.

Бор в своем принципе дополнительности придал гейзенберговскому соотношению неопределенностей законченную теоретико-познавательную форму. Основное содержание этого принципа он сформулировал так: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу; они являются дополняющими картинами происходящего».

Атомные системы, для которых существенным является квант действия Планка, не могут рассматриваться так же, как частицы макромира, для которых планковская константа h ввиду ее малой величины не имеет значения. В мире атома корпускулярная и волновая картины сами по себе не являются достаточными, как в мире больших тел. Обе «картины» законны, и противоречие между ними нельзя снять. Поэтому корпускулярная и волновая картины должны дополнять одна другую, то есть быть «комплементарными». Только при учете обоих аспектов получают общую картину микрофизики, прежде всего, электронной механики, о которой, в первую очередь, идет речь в теориях Бора и Гейзенберга.

Результаты квантовой механики, обобщенно изложенные в 1927 году в гейзенберговском соотношении неопределенностей и в принципе дополнительности Бора, принудили гносеологов критически пересмотреть существовавшее ранее классическое представление о действительности. Стало ясно, что «описание физической реальности, совершенно не зависимой от средств, при помощи которых мы ее наблюдаем, строго говоря, невозможно», как писал известный французский физик и лауреат Нобелевской премии Луи де Бройль. Природу можно описывать только как нечто подчиняющееся естественнонаучным методам исследования.

Принципиально новой чертой в теоретико-познавательном анализе квантовых явлений, согласно Бору, является введение основополагающего различия между измерительным прибором и исследуемым объектом. Взаимодействие между измерительными приборами и атомными объектами образует неотделимую составную часть явлений атомного мира. Квантовомеханическое описание атомных объектов должно быть связано с классическим описанием применяемых измерительных инструментов.

Все вышесказанное, вновь подтверждая мысль В.И. Ленина о «неисчерпаемости материи вглубь», никоим образом не ставит под сомнение объективность природы, объективную реальность внешнего мира, существующего независимо от человеческого сознания. Объекты атомного мира в неменьшей степени относятся, как подчеркивал советский физик В.А. Фок, к реальному внешнему миру, и их свойства не менее реальны, чем вещи и свойства, исследуемые в классической физике. Но наивное представление о реальности, которое позволяло рассматривать частицы в атомной физике как очень маленькие песчинки, после 1927 года не могло уже оставаться в силе.

Доказанный квантовой механикой факт, что между деятельностью субъекта и противодействием объекта нет никакой четкой границы, не мешает нам, как подчеркивал Макс Борн, «разумным образом использовать эти понятия». Он пояснял сказанное наглядным примером: «Граница между жидкостью и ее паром также нечетка, потому что атомы постоянно улетучиваются и конденсируются, и, несмотря на это, мы можем говорить о жидкости и паре».

Диалектическое усложнение понимания реальности в квантовой механике оказало воздействие на решение вопроса о причинной обусловленности и о строгой предсказуемости всех природных процессов.

Вместе с другими ведущими представителями квантовой теории Нильс Бор придерживался мнения, что исследование субатомных явлений в мельчайших подробностях невозможно, потому что любая попытка изучения этих процессов сопровождается нежелательным вмешательством измерительных инструментов в ход событий. Поэтому при прогнозировании квантовомеханических процессов можно говорить только о вероятности их наступления, но не о естественно необходимой достоверности. Все положения теории атома имеют вероятностный характер. Все законы атомной физики являются вероятностными законами.

Наряду с понятием вероятности, властно выступившим на передний план в боровском теоретико-познавательном изложении вопросов квантовой механики, фундаментальное значение получило также различие между возможностью и реальностью, которое не имело гносеологической ценности для классической механики и которым поэтому пренебрегали. Понятие возможности, которое означает только «потенциально существующее», в дальнейшем развитии хода мысли Бора и Гейзенберга стало настоящим ядром философской интерпретации явлений атомной физики.

В своих теоретико-познавательных работах Бор не только выступал всегда как материалист, но был самобытным и глубоким диалектиком. Его принцип дополнительности, отражающий непримиримые противоречия микромира, является диалектическим принципом в полном смысле слова. Открытие этого принципа – главная заслуга датского физика перед теорией познания. Одно только это открытие позволяет рассматривать Бора как одного из крупнейших теоретиков среди ученых-естествоиспытателей нового времени.

Правда, теоретико-познавательные устремления Бора и его учеников долгое время не встречали понимания и превратно истолковывались. Об этом ученый говорил в 1961 году в разговоре с советскими физиками во время своего последнего приезда в Москву.

Многие философы-материалисты до недавнего времени обвиняли Бора в приверженности к субъективному идеализму, толкуя грубо упрощенно его взгляд на проблему реальности как «отрицание» реальности внешнего мира. Временные сомнения Бора в строгой универсальности закона сохранения энергии и количества движения в сфере атома были использованы в философской литературе в качестве примеров «антинаучных выводов» и «скатывания к идеализму и агностицизму».

Большая заслуга в устранении этих и подобных недоразумений принадлежит, наряду с другими, советским физикам Иоффе и Фоку.

Иоффе в своей книге воспоминаний «Встречи с физиками» убедительно показал, что Бор ни в какой мере не отрицал реальности внешнего мира; он только стремился к тому, чтобы установить своеобразие его познаваемости. Нильс Бор, как писал Иоффе, был великим мыслителем, непрерывно развивающим и углубляющим свои представления о природе не только физических, но и биологических явлений.

По словам Фока, Бор в последнее время избегал выражения «неконтролируемое взаимодействие» между объектом и измерительным прибором, считая его недостаточно точным, хотя раньше он нередко пользовался этим выражением. Фок сообщает, что в разговорах с ним Бор давал высокую оценку диалектике и отклонял позитивизм.

В своей статье в планковском юбилейном сборнике 1958 года ведущий советский физик-теоретик, исходя из необходимости творческого развития диалектического материализма, отметил, в частности, что различие между средствами наблюдения и объектами микромира вынуждает отказаться от детерминизма классической механики и рассматривать принцип причинности так, как это пытался делать Бор.

По Фоку, квантовая теория представляет собой значительное и принципиальное расширение диалектико-материалистической картины мира. Принцип причинности в квантовой механике, который непосредственно относится к вероятностям и связанной с этим волновой функции, представляется ему необходимым обобщением классического закона причинности. Требуемое Гейзенбергом строгое различение понятий «возможное» и «осуществленное» является, по мнению Фока, необходимой предпосылкой последовательного физического толкования квантовой механики.

Но не только некоторые философы-материалисты неправильно поняли копенгагенское толкование теории атома и многие годы выступали против него. Физики, которые не были сторонниками диалектического материализма, такие, как Альберт Эйнштейн, Макс фон Лауэ или Эрвин Шрёдингер, не соглашались с основными теоретико-познавательными положениями Бора; более того, они принадлежали к самым первым противникам копенгагенской школы.

На Сольвеевских конгрессах в Брюсселе в 1927 и в 1930 годах дело даже дошло до драматически проходивших споров между Эйнштейном и Бором. Эти споры были продолжены в Принстоне в конце 30-х годов, а десять лет спустя возобновились в одном швейцарском журнале.

Эйнштейн упорно и настойчиво пытался три помощи остроумно задуманных мысленных экспериментов объективно опровергнуть вероятностно-теоретическое понимание квантовых явлений. Он снова и снова придумывал такую последовательность измерений, которая, противореча содержанию соотношения неопределенностей, позволила бы одновременно с одинаковой точностью определить место и величину движения микрочастицы. Но Бору удалось опровергнуть остроумнейшие возражения Эйнштейна против соотношения неопределенностей. В этом ему энергично помогли Гейзенберг, Паули, Дирак и другие молодые физики.

Однако Эйнштейн не признал себя побежденным, хотя в конце концов и согласился с тем, что статистическая квантовая теория копенгагенской школы является грандиозным и внутренне непротиворечивым мыслительным построением. Так же как Лауэ, Шрёдингер и Планк, он считал ее лишь вспомогательным средством; она не казалась ему исчерпывающим описанием событий в микрокосме.

Эйнштейн неоднократно проявлял свое недовольство взглядами копенгагенской школы, которые к тому же не удовлетворяли его в эстетическом плане. Так в 1938 году в письме к Соло-вину он порицал «чрезмерный субъективизм» копенгагенской школы. Год спустя после этого в послании Шрёдингеру он даже назвал Бора «мистиком». В 1950 году в письме к Лауэ он высмеивал «осторожничанье с реальностью», «философствующих физиков», имея в виду прежде всего сторонников Бора.

Особенно не по душе было Эйнштейну вероятностное понимание квантовых процессов потому, что он – не имея, впрочем, к этому никаких оснований – опасался, что таким образом будет опровергнут принцип причинности и место строгой естественной закономерности займет «играющий в кости бог». Так, после прочтения одной из ранних работ Бора он сказал физику-атомщику Хевеши: «Такую работу я и сам, пожалуй, мог бы написать, но если она правильна, то это конец физики как науки».

Сколько драматизма в том, что именно Эйнштейн, который благодаря своему квантовому учению стал одним из основателей квантовой теории и непосредственно на работу которого Бор опирался при создании своей модели атома, отказался от последовательного развития им самим избранного хода мысли. Причину подобного поведения следует в конечном счете искать б том, что Эйнштейн – великий диалектик в вопросах электродинамики, теории гравитации и космологии – в вопросах, касающихся внутриатомных явлений, оставался в плену старых механических представлений. И это при том, что в 1917 году он, введя понятие «переходная вероятность» – вероятность для перехода атомной системы из одного состояния в другое, – сам положил начало дальнейшему изучению диалектической природы атома.

В статье для эйнштейновского юбилейного сборника в 1949 году Бор, с глубокой печалью воспринимавший отрицательное отношение Эйнштейна к копенгагенской школе квантовой физики, дал захватывающее изложение многолетних научных дискуссий с коллегой физиком, перед которым он так преклонялся. Впрочем, и Эйнштейн, несмотря на различие их мнений по теоретико-познавательным вопросам, очень высоко ценил личность Бора и его научные труды. Он говорил Джеймсу Франку: «Я полагаю, что без Бора мы и сегодня знали бы слишком мало о теории атома».

Спор между Эйнштейном и Бором, затянувшийся более чем на четверть века, относится к крупнейшим идейным спорам в новейшей истории науки в немалой степени потому, что его участниками были два исследователя первой величины, два ученых, каждый из которых выдвинул бессмертные идеи в своей области физики атомного века.

Избранные места из своих основных сочинений по теории познания Бор издал в двух небольших, но необычайно глубоких по содержанию томах. Первый томик вышел в 1929 году как ежегодник Копенгагенского университета, в немецком издании он опубликован в 1931 году под характерным названием «Теория атома и описание природы», второй – «Атомная физика и человеческое познание» – появился в 1958 году.

При чтении этих работ даже в переводе обращает на себя внимание постоянное стремление их автора к тому, чтобы как можно точнее выразить свою мысль. По манере своей работы – за письменным столом – Бор был типичным «классиком», если применять оствальдовскую классификацию великих исследователей. Он оформлял и шлифовал языковую сторону своих научных сочинений, подобно поэту. Не случайно Бор говорил, что рукопись – это «нечто такое, во что вносятся исправления». Даже письма, которые не были предназначены для публикации, он нередко многократно переписывал, прежде чем отослать. В работах Бора нет ничего лишнего. Его концентрированный, сгущенный стиль во многом напоминает гениально лаконичную манеру письма Карла Маркса.

Первое обращение Бора к теоретико-познавательным вопросам было следствием скорее его языково-философских и критико-языковых соображений, нежели следствием его физических исследований. И позднее он снова и снова занимался проблемой неточности нашего разговорного языка, который должен служить средством понимания в науке. Во многих своих сочинениях Бор признавал трудности, проистекающие из такого положения, и указывал на опасность, которую несет с собой многозначность большого количества слов.

В книге «Теория атома и описание природы» Бор неоднократно обсуждает «неоднозначность нашего словоупотребления». Он полагал, что мы, по сути дела, вынуждены объясняться при помощи словесной картины, употребляя слова без предварительного их анализа. Здесь проявляется определенная связь его с «Венским кружком». Необходимость критики языка науки в то время (около 1930 года) сильнее всего подчеркивалась Рудольфом Карнапом. Не случаен и тот факт, что во время конференции по философии науки, проходившей в 1936 году в Копенгагене, представители этой философской школы пользовались гостеприимством Нильса Бора и он сам наряду с Филиппом Франком выступил с докладом на заседании.

Первая фаза развития квантового учения, которая характеризовалась главным образом трудами Планка, Эйнштейна, Бора и Зоммерфельда, завершилась в 1925 году и увенчалась принципом, открытым молодым австрийским физиком Вольфгангом Паули. Согласно этому принципу, в соответствии с естественной закономерностью исключается вероятность того, что внутри одного атома одинаковые орбиты могут быть заняты несколькими одинаковыми электронами. Иными словами, в одном атоме не может быть двух и более электронов, которые одинаковы по всем четырем квантовым параметрам, то есть находятся в одинаковом состоянии.

Этот фундаментальный принцип, который приобрел известность как принцип исключения Паули, или, короче, запрет Паули, оказался надежным указателем к новым важным открытиям, к пониманию теплопроводности и электропроводности металлов и полупроводников. Только теперь с учетом строения оболочки атома могла быть во всей ее глубине понята периодическая система элементов, эмпирически составленная в 1869 году Менделеевым. Это было большим достижением физических исследований.

В возрасте 37 лет (в 1922 году) Нильс Бор получил Нобелевскую премию по физике. В своем нобелевском докладе о строении атома он дал отчет о прежней своей работе и обзор состояния исследований атома. Он полагал, что квантовая теория находится еще у своих истоков и предстоит искать ответ на многие вопросы.

Присуждение Нобелевской премии принесло исследователю всемирную славу и множество дополнительных научных обязанностей, которые он исполнял в высшей степени добросовестно. Как и Эрстед столетие назад, Бор был ведущим физиком своей страны и центральной фигурой общественной жизни датской столицы – национальным героем, или, как иногда говорили, «национальной святыней».

Дом Нильса Бора, похожая на дворец вилла с колонным залом, расположенный в центре великолепного парка, был передан ему в 1932 году Датской Академией наук в знак признания его заслуг. Он стал центром научной жизни. Коллеги из разных концов мира находили здесь хлебосольный прием. Во время институтских празднеств здесь принимали нередко больше ста гостей. Здесь бывали художники и политические деятели.

В противоположность Эйнштейну, который, по его собственному признанию, всегда «ходил в одиночной упряжке», не чувствовал сильной привязанности к своим близким и вообще испытывал мало нужды в людях и в человеческом обществе, Бор был главой счастливой и дружной семьи. Это давало ему утешение и силы в трудные минуты. Старший из его шести сыновей трагически погиб во время катания на лодках по морю. Иоффе вспоминал об отчаянном письме, которое он получил тогда от Бора.

В отличие от многих других физиков-математиков, которые были страстными любителями музыки, Бор не имел музыкальных наклонностей. Однако он глубоко понимал литературу и изобразительное искусство, особенно живопись и скульптуру. В этих областях он даже сам временами работал. Вайцзеккер сообщает, что однажды он видел, как Бор «вырезал из дерева ветряк совершенной красоты и безукоризненного хода».

В молодости великий физик был страстным футболистом. Вместе со своим братом Харальдом он некоторое время входил в состав национальной команды Дании. Когда в 1922 году в Стокгольме ему была вручена премия, одна датская газета написала, что «известному футболисту Нильсу Бору» присуждена Нобелевская премия. Как и Вилли Вин, Бор любил лыжный спорт и нередко брал с собой на лыжные прогулки своих учеников и сотрудников.

С 1930 года ученый все больше и больше занимался проблемами атомного ядра. С точки зрения истории науки заслуживает упоминания положение, развитое им в 1936 году: при приеме нейтрона, то есть при проникновении нейтрона в атомное ядро, возникает «объединенное» или «промежуточное» ядро. Эта модель сыграла важную роль в развитии физики нейтронов.

Бор был также одним из первых, кто смог правильно объяснить механизм открытого Ганом и Штрасманом расщепления ядра и понять научное и техническое значение этого открытия. Об этом свидетельствует теория расщепления ядра, созданная им совместно с американским физиком Уилером в 1939 году.

Подобно Планку, Эйнштейну и Лауэ, Бора отличала доброта и всегдашняя готовность прийти на помощь. Шрёдингер сказал как-то, что считает Бора одним из самых добрых людей, каких он когда-либо встречал. Проявлению этих его качеств не мешала даже напряженнейшая исследовательская работа.

Когда после захвата власти в Германии фашистами некоторые подающие надежды или уже известные физики вынуждены были покинуть свою родину по расовым или политико-мировоззренческим мотивам, многие из них нашли в Копенгагене первое прибежище. Нильс Бор, который вместе со своим братом Харальдом создал в Дании Комитет поддержки изгнанных интеллигентов, использовал свое огромное влияние для того, чтобы предоставить эмигрантам новые возможности для работы.

Среди его гостей был Джеймс Франк, который после своей эмиграции больше года преподавал в Копенгагене как профессор-гость до тех пор, пока не переехал в США. Лиза Мейтнер после своего бегства из гитлеровской Германии летом 1938 года также приехала к Бору, прежде чем отправиться в Швецию. Молодые, тогда еще неизвестные физики тоже пользовались гостеприимством великого ученого, антифашиста и гуманиста.

Джеймс Франк во время своего пребывания в Копенгагене имел возможность наблюдать влияние Бора на окружающих. Он писал, что беседы в доме Бора не ограничивались только вопросами физики или естествознания, но относились также к философии, истории, истории религии, этическим проблемам, искусству и политике.

«Сам Бор обладал широким кругом интересов, – писал Франк. – Он много читал, имел хорошую память и размышлял обо всем, что прочитал и пережил. С самого начала он не имел склонности замыкаться в науке, как в башне из слоновой кости; он, скорее, считал своим долгом быть информированным о жизни и делах человеческого общества и, если необходимо, откровенно высказывать об этом свое мнение. Огромному числу людей помог он своим примером и своими дискуссиями серьезно относиться к этому долгу и исполнять его. Дом Бора можно было по праву сравнить с греческой академией. Он был идеальным приютом для малых и больших дискуссионных групп, которые вели беседы в стиле перипатетиков».

После вступления в Данию гитлеровских войск весной 1940 года Бор остался в стране несмотря на то, что был известен как противник фашистской диктатуры и как «полуеврей» подвергался опасности. Он был ректором Копенгагенского университета и работал над введением к задуманному им обширному произведению о национальной культуре Дании. Нацисты считали великого физика своим опаснейшим врагом.

В конце сентября 1943 года ученый, который находился в тесной связи с датским антифашистским движением Сопротивления, тайно получил извещение о том, что его готовятся перевезти в Германию. Следующей же ночью на лодке его переправили в Швецию, чтобы спасти от лап гестапо. Его спасение было подготовлено и осуществлено датскими антифашистами. «Славным делом датчан, – замечал по этому поводу Джеймс Франк, – было то, что они сумели переправить всех жителей Дании, преследуемых по политическим или расовым мотивам, через Зунд в Швецию. И ночная переправа Бора в рыбацкой лодке была замечательным и далеко не безопасным предприятием».

Из Швеции Нильс Бор направился на самолете в Англию, откуда затем вместе со своим сыном Оге вылетел в Соединенные Штаты Америки. «И этот полет имел свои опасности, – сообщал Джеймс Франк. – Череп Бора был слишком велик для дужек, с помощью которых в этих самолетах прижимали к ушам необходимые для связи микрофоны. Поэтому он не слышал требования пилота надеть кислородную маску и потерял сознание. Он пришел в себя лишь после того, как Оге Бор указал пилоту на его состояние и тот перевел самолет в нижние слои атмосферы».

В США Бор под вымышленной фамилией Бейкер участвовал как советник-сотрудник в Лос-Аламосе в изготовлении американской атомной бомбы. Его решение заниматься этим делом определялось той же горькой необходимостью, которая заставила Эйнштейна обратиться с письмом к Рузвельту.

Когда стало ясно, что гитлеровская Германия уже не в состоянии овладеть атомным оружием, Бор употребил все свое влияние для того, чтобы воспрепятствовать применению американских атомных бомб. С этой целью он лично беседовал с президентом Рузвельтом. Смерть президента еще до военного разгрома гитлеровского рейха стала одной из причин того, что усилия ученого оказались напрасными. Бор так же, как и Эйнштейн и все гуманистически настроенное человечество, был поражен и возмущен позорным актом правительства Трумэна, его преступлением в Хиросиме и Нагасаки.

С начала 30-х годов Нильс Бор неоднократно бывал в Советском Союзе. Как пишет в своей книге воспоминаний Иоффе, который познакомился с Бором в 1922 году в Гёттингене, Бор во время своего первого визита в Ленинград стал свидетелем первомайского парада и демонстрации перед Зимним дворцом, которые произвели на него «большое впечатление единством населения огромного города с партийным руководством». После своего возвращения он написал об этом в опубликованной датской прессой статье, которая, как заметил Иоффе, вызвала большое недовольство в антисоветских кругах. Бор был искренним другом советской науки и охотно принимал в свой институт советских ученых. Многие известные советские физики и сегодня с благодарностью вспоминают о времени, проведенном ими в Копенгагене у Бора.

С политической точки зрения достоен упоминания меморандум, который Нильс Бор направил в 1950 году Организации Объединенных Наций. В нем он заявил, что следует бороться с атомным вооружением для того, чтобы предотвратить угрозу атомной войны. Главным пунктом его предложения было создание «открытого мира». Под этим он понимал мирное сотрудничество всех государств, свободное сообщение между ними и беспрепятственный обмен информацией.

Все это служит свидетельством того, как отчетливо осознавал великий физик политическую ответственность естествоиспытателя в наше время и как настоятельно стремился он к тому, чтобы быть верным долгу, который налагали на него его научные заслуги.

Будучи одним из известнейших ученых нашего века, Нильс Бор был осыпан академическими почестями. В течение многих лет он был президентом Датской Академии наук, в которую входил с 1917 года. Он был членом многих иностранных обществ и академий, в том числе и Берлинской Академии наук (с 1922 года), Академии наук СССР (с 1929 года), Немецкой Академии естествоиспытателей «Леопольдина» (с 1932 года), по просьбе которой он после избрания написал автобиографию. Ему присуждено семнадцать званий почетного доктора. Одной из его последних научных наград была медаль Гельмгольца Германской Академии наук в Берлине.

В наградном акте так характеризуются научные заслуги исследователя: «Он первый во всей глубине постиг то новое, что было непонятно нам в квантовых явлениях в природе. С 1922 года он вносил свою долю фундаментальных трудов в разработку самых существенных вопросов квантовой теории атомов, молекул и ядер, без этих трудов немыслимо было бы достойное восхищения здание современной квантовой физики».

В мае 1961 года Бор последний раз посетил Советский Союз. Московский университет им. Ломоносова присвоил ему звание почетного профессора. Когда после доклада на семинаре физиков Капицы и Ландау его спросили о «тайне», которая позволила ему собрать вокруг себя такое большое число молодых творчески мыслящих теоретиков, он ответил: «Никакой особой тайны не было, разве что мы не боялись показаться глупыми перед молодежью».

Советский лауреат Нобелевской премии Тамм отмечал, что это очень характерное для Бора высказывание. Бору было совершенно чуждо любое важничанье и зазнайство, он отличался поразительной скромностью. Действительно, ни одна дискуссия не может быть плодотворной, говорил Тамм, если участники опасаются задавать вопросы, которые могут обнаружить пробелы в их знаниях, и поэтому боятся показаться «глупыми».

Нильс Бор, большинство основополагающих трудов которого было опубликовано также и на немецком языке, в июне 1962 года последний раз был на немецкой земле, приняв участие в традиционной встрече лауреатов Нобелевской премии в Линдау. «Нас беспокоили его усталость и очень непродолжительное, но серьезное заболевание, которое он перенес в последние дни пребывания в Линдау, – писал Джеймс Франк. – Но он чрезвычайно быстро поправился и можно было надеяться, что ему суждена еще долгая жизнь. Однако эти надежды не сбылись».

18 ноября 1962 года, отдыхая от работы, великий физик заснул и больше не проснулся.

«Нильс Бор прожил исключительно богатую и счастливую жизнь, – писал Франк в заключение своей мемориальной статьи. – Его гений и его сила позволили ему открыть новую эру в науке. Он был окружен одаренными учениками и сотрудниками; его брак был счастливым и гармоничным; он видел, как его сыновья, за исключением трагически рано погибшего старшего, выросли настоящими людьми. Его сын Оге стал физиком, пользовавшимся большим уважением. Он видел, как росла семья, и радовался многочисленным внукам. Бор завоевал любовь всех, кому посчастливилось близко знать его, и уважение всего мира».

Дело гениального датского естествоиспытателя творчески продолжается выдающимися физиками-атомщиками, среди которых прежде всего следует назвать Вернера Гейзенберга. Следует вспомнить также Леона Розенфельда, который в течение многих лет был ближайшим сотрудником Бора и принадлежит сегодня к ведущим теоретикам атома.

Вернер Гейзенберг, находясь в Копенгагене, осенью 1927 года получил приглашение стать ординарным профессором теоретической физики в Лейпцигском университете. Уже через два года молодой физик принял лестное приглашение совершить поездку с чтением лекций в США, Японию и Индию. В 1932 году он вновь был приглашен для чтения лекций в Соединенные Штаты Америки. Его институт в Лейпциге стал новым центром теоретической атомной физики в Германии.

Многие из современных наиболее известных исследователей атома были учениками или сотрудниками Гейзенберга, среди них Эдвард Теллер, «отец водородной бомбы», Виктор фон Вайскопф, Л.Д. Ландау, Зигфрид Флюгге и Карл Фридрих фон Вайцзеккер. В возрасте 32 лет в 1933 году Гейзенберг получил Нобелевскую премию по физике.

Во времена гитлеровского фашизма лейпцигский ученый неоднократно подвергался политическим нападкам. Уже в конце 1933 года, когда он возвратился из Стокгольма после получения Нобелевской премии, студенты-нацисты пытались устроить в его аудитории манифестацию; затея, однако, не удалась. После того как физик Штарк, задававший тон национал-социалистской политике в отношении науки, многократно порочил Гейзенберга в своих выступлениях, летом 1937 года он напечатал в одной из эсесовских газет злобную статью, клеймящую Гейзенберга как «Оссецкого от физики», как «белого еврея», и потребовал соответствующих мер. Только в силу случайного счастливого стечения обстоятельств, а также из-за международного признания, которым пользовался физик, ему удалось избежать расправы.

Жалоба, которую он направил в министерство по поводу подстрекательской статьи Штарка, нанесшей ущерб его преподавательской деятельности, несмотря на многочисленные напоминания, осталась без ответа. В одном из писем руководителя министерства народного образования Саксонии мы находим указание на причины этого. Там говорится, что Гейзенберг «сам накликал на себя» нападки Штарка «из-за своего собственного, политически неблагонадежного поведения», что ему не следует прощать отказ «подписать воззвание немецких профессоров к фюреру».

В лейпцигские годы Гейзенберг выдвинул идею о том, что атомное ядро состоит из протонов и нейтронов. Эту идею он развал после открытия нейтрона английском физиком Чедвиком почти одновременно с советским физиком-атомщиком Д.Д. Иваненко и независимо от него.

Позднее он много занимался космическим высотным излучением, которое в 1911 году открыл австриец Гесс. В исследование этого явления большой вклад внесли также немец Кольхерстер, англичанин Блэккет и американец Милликен. Доклад Гейзенберга на эту тему был кульминационным пунктом конгресса физиков-атомщиков, который состоялся в 1936 году в Копенгагене по инициативе и под руководством Бора.

Нападки Штарка помешали Гейзенбергу стать преемником его учителя Зоммерфельда в Мюнхене, хотя он получил приглашение занять освободившееся место. Вскоре после начала второй мировой войны исследователь в связи с его работой в Физическом институте был назначен профессором Берлинского университета.

О своей работе во время второй мировой войны Вернер Гейзенберг говорил: «После открытия расщепления ядра Отто Га-ном в 1938 году следствием войны оказалось то, что я вместе с моими сотрудниками должен был заниматься конструированием атомных реакторов. Несмотря на то что вначале я был далек от такой задачи, мой интерес в высшей степени возбудила открытая атомной физикой возможность получения огромных атомных источников энергии. Я считаю, что немецким физикам очень повезло в том, что ход войны и действия правительства исключали любую серьезную попытку изготовления атомного оружия и тем самым избавляли физиков от тяжелой ответственности за подобное деяние».

И в годы войны Гейзенберг старался поддерживать научные связи с Бором. Во время пребывания в Копенгагене осенью 1941 года он попытался, правда в не очень удачной форме, дать понять Бору, что оставшиеся в гитлеровской Германии физики-атомщики не работают над использованием открытия Гана в военных целях. Можно предполагать, что, даже если бы Бор правильно понял намеки Гейзенберга, маловероятно, что это помогло бы преодолеть недоверие западных держав и способствовать прекращению работ над американской атомной бомбой.

В 1945 году Гейзенберг вместе с другими немецкими физиками был перевезен в Англию и содержался там под арестом в течение нескольких месяцев. Он часто радовал превосходной игрой на рояле своих сотоварищей, в числе которых были Макс фон Лауэ, Отто Ган и Вальтер Герлах. После возвращения в Германию он принял руководство Институтом физики им. Макса Планка. В 1958 году этот институт был переведен из Гёттингена в Мюнхен.

Еще в 30-х годах Вернер Гейзенберг с растущим упорством стремился проникнуть в процессы, протекающие внутри атомного ядра. Его последние работы были посвящены прежде всего изучению элементарных частиц, которые он считал самой перспективной областью исследований современной атомной физики, так как природа их законов еще мало известна. «В послевоенное время, – говорил он, – стало возможным сделать следующий шаг в атомной физике, ведущий от атомных ядер к мельчайшим единицам материи, атомным частицам. Здесь меня особенно привлекает возможность пробиться к центральному узловому пункту, в котором соединены естественные законы различных известных сфер опыта (механики, учения об электричестве, учения о теплоте, химии и т.д.), исходящие из единого закона природы для элементарных частиц».

Во время празднования 100-летия со дня рождения Планка в апреле 1958 года Гейзенберг предложил вниманию научной общественности свою новую теорию элементарных частиц. Он выдвинул «мировую формулу», которая должна была включать в себя также и элементарные частицы гравитации. Наряду со скоростью света с к планковской константой h им была введена новая естественная константа – «наименьшая длина».

Рассуждения Гейзенберга вызвали большой интерес не только в кругу его коллег. Следует при этом отметить и особо подчеркнуть, что Бору теория Гейзенберга казалась «недостаточно безумной» для того, чтобы быть действительно ясной и основательной теорией. Бор считал, что гейзенберговская теория элементарных частиц, несмотря на смелость, не является настолько «невероятной», насколько это необходимо для правильного объяснения еще не разгаданных связей.

На собрании Общества немецких естествоиспытателей и врачей в Веймаре в октябре 1964 года Гейзенберг прочел перед широкой аудиторией, собравшейся в национальном театре, доклад о состоянии новейших исследований в области теории элементарных частиц. Ученый пришел к выводу, что элементарные частицы «являются до некоторой степени теми формами, в которых проявляется энергия, если она стремится стать материей». Придерживаясь точки зрения современной теории элементарных частиц, он полагал, что в споре греческих философов о природе мельчайших материальных единиц Платон, утверждавший, что это должны быть математическо-симметрические формы, был более прав, чем Демокрит, который считал атомы бесконечно малыми вещами.

В своих работах «Изменения основ естествознания», «Картина природы в современной физике» и «Физика и философия» Гейзенберг высказал свое мнение по спорным натурфилософским и теоретико-познавательным вопросам. Если ранее он склонялся к субъективно-идеалистическим воззрениям, то в последнее время он придавал большое значение тому утверждению, что копенгагенское толкование квантовой теории ни в коем случае не является позитивистским.

«В то время как позитивизм исходит из чувственных восприятий как элементов бытия, – говорил он в 1957 году, – копенгагенская интерпретация рассматривает описываемые в классических понятиях объекты и процессы, то есть фактическое, в качестве основы всякого физического объяснения. Вместе с тем признается также, что статистичность природы законов микрофизики устранена быть не может, так как всякое знание «фактического» в силу квантовомеханических законов природы является знанием неполным» (см. факсимиле).

С отказом от субъективного идеализма в мышлении Гейзенберга наметился поворот к объективному идеализму: процесс, подобный тому, который произошел в мышлении Эйнштейна. Все более частые ссылки на Платона служат новым подтверждением того, что взгляды философов-идеалистов также могут стимулировать мышление естествоиспытателей. В этом случае важную роль играет то, каким образом перерабатываются в сознании исследователя эти стимулы. Впрочем, к некоторым гносеологическим положениям Гейзенберга с полным правом можно отнести замечание, сделанное В.И. Лениным в «Философских тетрадях» относительно некоторых идей объективного идеалиста Гегеля: «Рукой подать к материализму».

Борьба физика-мыслителя против старой механистически-догматической «онтологии» и против порой бессознательных попыток поставить ее во взаимосвязь с некоторыми новыми достижениями атомной физики заслуживает поддержки всех прогрессивно настроенных естествоиспытателей и философов. Однако при этом не следует забывать слова Поля Ланжевена о том, что невозможно во всей глубине охватить и объяснить проблемы атомной физики, не руководствуясь диалектическим материализмом.

Вернер Гейзенберг входил в группу ученых, подписавших весной 1957 года Гёттингенское обращение, он поддерживал также и другие заявления, направленные на уменьшение напряженности и на сохранение мира. Он неоднократно подчеркивал высокую ответственность именно физиков-атомщиков в деле предотвращения мировой войны.

«Изобретение атомного оружия, – говорится, например, в его книге «Физика и философия», – поставило и перед наукой и перед учеными совершенно новые проблемы. Влияние науки на политику стало много больше, чем оно было перед второй мировой войной; и это обстоятельство налагает двойную ответственность на ученых, особенно на физиков-атомщиков». Долг физиков, подчеркивал Гейзенберг, указать своим правительствам на невообразимые масштабы разрушений, которые, несомненно, будут последствием войны с применением ядерного оружия.

Большой вклад в становление физики атомного века внесли Джеймс Франк и Густав Герц, выступившие как исследователи в том же году, что и Нильс Бор. Их опыты с электронной бомбардировкой и их последующая исследовательская и педагогическая деятельность имели большое значение для развития атомной физики.

После доцентуры в Берлинском университете, которая была прервана первой мировой войной, Джеймс Франк с 1922 по 1933 год был профессором экспериментальной физики в Гёттингене. Вместе с Максом Борном, выдающимся представителем теоретической физики, он стал центром той блестящей школы исследований атома, которая создала Гёттингену мировую славу в этой области. Студенты удивлялись прежде всего необычайной способности Франка к чисто наглядному методу рассмотрения, позволявшему ему понимать и объяснять труднейшие физические проблемы, при решении которых другие не могли обойтись без «костылей математики».

Враждебная науке политика гитлеровского фашизма и преследование евреев побудили знаменитого ученого из солидарности с уволенными коллегами отказаться от своего поста весной 1933 года. От «льготы», которая полагалась ему как участнику мировой войны, он также наотрез отказался. Вначале исследователь оставался в Гёттингене, где на своей квартире проводил научные коллоквиумы с учениками и друзьями. В конце 1933 года он был вынужден, однако, покинуть родину.

После короткого пребывания в Балтиморе и Копенгагене Франк долгие годы работал в Соединенных Штатах Америки, с 1938 года – в исследовательском институте в Чикаго. Его научные интересы были обращены в основном к исследованиям в области молекулярной спектроскопии и фотосинтеза. Однако самым главным его делом в США была по словам одного из его учеников, общественная деятельность, которая нашла свое отражение в 1945 году в докладе Франка.

Доклад Франка, документ человечности и свидетельство понимания научно-политической ответственности ученого, составленный в несколько необычной форме, сделал имя физика известным далеко за пределами круга ученых. К сожалению, это предостережение, которое служило образцом для всех последующих выступлений исследователей-ядерщиков против злоупотребления достижениями атомной физики, так же не достигло задуманной цели, как и памятная записка, которую Нильс Бор за год до этого передал президенту США. Сторонников империалистической политики силы не интересовали тревоги ученых-гуманистов.

Джеймс Франк, которому по случаю 150-летия Университета им. Гумбольдта было присвоено в 1960 году звание почетного доктора, четыре года спустя в последний раз посетил столицу Германской Демократической Республики. Вместе с Лизой Мейтнер и Густавом Герцем он участвовал в Галилеевском коллоквиуме, который проводился во время «Дней Берлинского университета» в апреле 1964 года в Магнусхаузе на Купферграбене. Через несколько недель после этого, 21 мая 1964 года, исследователь внезапно скончался в Гёттингене. Он закончил свой жизненный путь в том городе, где 12 лет был учителем многих, ставших позднее знаменитыми физиков-атомщиков.

Его друг и сотрудник Густав Герц, также принимавший участие в первой мировой войне, восстановив силы после тяжелого фронтового ранения весной 1917 года, участвовал в конкурсе на получение доцентуры в Берлинском университете. Он представил работу «Об энергетическом обмене при столкновении между медленными электронами и молекулами газа» и четырнадцать статей по физике Его публичная испытательная лекция была посвящена принципу Доплера. В первой половине 20-х годов Герц работал «физиком от промышленности» в Голландии. В 1925 году он был приглашен в университет Галле. С 1928 года исследователь (награжденный совместно с Джеймсом Франком Нобелевской премией) преподавал в течение семи лет в Высшей технической школе в Берлине. Его учениками были известные физики, в их числе Эрвин Мюллер, создатель электронного микроскопа.

Будучи вынужденным в 1935 году оставить кафедру, он стал руководителем исследовательской лаборатории на одном из крупных промышленных предприятий Берлина. После 1945 года Густав Герц вместе с другими известными немецкими учеными и изобретателями, Петером Адольфом Тиссеном, Максом Штейнбеком и Манфредом фон Арденне, работал в течение 10 лет в Советском Союзе. За свои выдающиеся научные достижения он получил в 1951 году Государственную премию СССР.

После возвращения в Германскую Демократическую Республику Густав Герц руководил в Лейпциге Физическим институтом при Университете им. Карла Маркса. Вышедший под его редакцией многотомный «Учебник ядерной физики» принадлежит к числу лучших работ такого рода по ядерной физике. Его работы по разделению изотопов, исследование квантообразного возбуждения атомов электронами и его значительный вклад в область физики разреженного газа и физики твердого тела Немецкая Академия наук в 1950 году отметила присуждением ему своей высшей награды – медали Гельмгольца.

Нильс Бор, его ученики и соратники во всем мире строили свои исследования на таких физических представлениях, которые были заложены еще Максом Планком на пороге XX века. Бор неоднократно высказывал свое глубокое восхищение творцом идеи о квантах. В своей статье в планковском юбилейном сборнике в 1958 году он писал: «Развитие квантовой физики, которое в результате плодотворного сотрудничества целого поколения физиков столь углубило и расширило наши знания об атомных процессах и о строении материи, представляет собой один из интереснейших периодов в истории физики. Каждый, кто был свидетелем этого развития, все снова и снова вынужден был удивляться тому вдохновению и той проницательности, которые привели Макса Планка к его основополагающему открытию. Я всегда буду хранить благодарные воспоминания об этом благородном и добром человеке».

Гениальная гипотеза Планка спустя четверть века благодаря трудам Нильса Бора и других выдающихся исследователей была развита в стройную теорию.

От этой «классической» квантовой теории через волновую и матричную механику долгий и нелегкий путь ведет к релятивистской «квантовой теории полей». На этом пути не только перед физиками, но и перед гносеологами вновь и вновь вставали трудные задачи. Это развитие, далеко еще не завершенное, может служить подтверждением предсказания В.И. Ленина о том, что современная физика поднимется до диалектического материализма, даже если она будет приближаться к этой цели только «ощупью, шатаясь, иногда даже задом».

Заслуживает внимания еще один момент. В своей статье в планковском юбилейном сборнике 1958 года и в сборнике, изданном в 1961 году в связи с 60-летием Вернера Гейзенберга, Нильс Бор подчеркивал значение, которое приобретает международное сотрудничество физиков для прогресса науки. «Перебирая мои воспоминания прежних лет, – писал он, – я от всего сердца хочу подчеркнуть, что шаг за шагом благодаря тесному сотрудничеству целого поколения физиков многих стран удалось наконец навести порядок в новой обширной сфере опыта». Бор добавляет: «В этот период развития физической науки, который можно сравнить с чудесным приключением, Вернеру Гейзенбергу принадлежит выдающаяся роль».

Нильс Бор и его школа положили начало новому стилю исследовательской работы в теоретической физике. Время великих мыслителей-одиночек, которое в лице Альберта Эйнштейна имело своего последнего выдающегося представителя, сегодня уже принадлежит прошлому и никогда не возвратится.

 

Эрвин Шрёдингер и Макс Борн

Оглавление

 

Дата публикации:

18 июня 2001 года

Электронная версия:

© НиТ. Раритетные издания, 1998

В начало сайта | Книги | Статьи | Журналы | Нобелевские лауреаты | Издания НиТ | Подписка
Карта сайта | Cовместные проекты | Журнал «Сумбур» | Игумен Валериан | Техническая библиотека
© МОО «Наука и техника», 1997...2017
Об организацииАудиторияСвязаться с намиРазместить рекламуПравовая информация
Яндекс цитирования
Яндекс.Метрика